Дендримерные многофункциональные комплексы для генетической терапии рака
https://doi.org/10.29235/1818-9857-2025-01-78-83
Аннотация
В статье представлен обзор синтезированных к настоящему времени наночастиц, перспективных для применения в терапии онкозаболеваний в качестве носителей лекарств и нуклеиновых кислот, а также для снижения токсичности противоопухолевых препаратов. Затрагиваются вопросы взаимодействия различных наноматериалов с малыми противораковыми РНК. Приведены данные использования некоторых нетоксичных и эффективных многофункциональных наноконъюгатов в генной терапии для лечения и диагностики онкологических заболеваний.
Ключевые слова
Об авторах
А. СтановаяБеларусь
Алеся Становая, научный сотрудник лаборатории нанобиотехнологий, аспирант
М. Терехова
Беларусь
Мария Терехова, научный сотрудник лаборатории нанобиотехнологий
В. Абашкин
Беларусь
Виктор Абашкин, завлабораторией нанобиотехнологий, кандидат биологических наук
Е. Улащик
Беларусь
Егор Улащик, научный сотрудник лаборатории химии биоконъюгатов
Д. Щербин
Беларусь
Дмитрий Щербин, завотделом медицинских биотехнологий, доктор биологических наук, профессор
Список литературы
1. Dendron-functionalised hyperbranched bis-MPA polyesters as effi ient non-viral vectors for gene therapy in different cell line / M. San Anselmo [et al.] // Biomater Sci. 2022. May 17. №10. P. 2706–2719. Doi: 10.1039/d2bm00365a.
2. PAMAM-Functionalized Cellulose Nanocrystals with Needle-Like Morphology for Effective Cancer Treatment / Y. Sun [et al.] // Nanomaterials (Basel). 2021. №11 (7). P. 1640. Doi: 10.3390/nano11071640.
3. A tumor-activatable peptide supramolecular nanoplatform for the delivery of dualgene targeted siRNAs for drug-resistant cancer treatment / Y. Wu [et al.] // Nanoscale. 2021. №13 (9). P. 4887–4898. Doi: 10.1039/d0nr08487e.
4. Nanoassemblies with Effective Serum Tolerance Capability Achieving Robust Gene Silencing Efficacy for Breast Cancer Gene Therapy / H. Liu [et al.] // Adv Mater. 2021. №33 (7). P. e2003523. Doi: 10.1002/adma.202003523.
5. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo / T. Yu [et al.] // Angew Chem Int Ed Engl. 2012. №51. P. 8478–8484.
6. Development of targeted gene delivery system based on liposome and PAMAM dendrimer functionalized with hyaluronic acid and TAT peptide: In vitro and in vivo studies / M. Ebrahimian [et al.] // Biotechnol Prog. 2022. №38(5) P. e3278. Doi: 10.1002/btpr.3278.
7. All-In-One Dendrimer-Based Lipid Nanoparticles Enable Precise HDR-Mediated Gene Editing In Vivo / L. Farbiak [et al.] // Adv Mater. 2021. №33(30). P. e2006619. Doi: 10.1002/adma.202006619.
8. Yuba E. Hydrophilic Hyperbranched Polymer-Coated siRNA/Polyamidoamine Dendron-Bearing Lipid Complexes Preparation for High Colloidal Stability and Efficient RNAi / E. Yuba, T. Korenaga, A. Harada // Bioconjug Chem. 2021. №32 (3). P. 563–571. Doi: 10.1021/acs.bioconjchem.1c00035.
9. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study / L. Ding [et al.] // Small. 2020. №16 (37). P. e2003290. Doi: 10.1002/smll.202003290.
10. Li X. Self-assembly of four generations of RNA dendrimers for drug shielding with controllable layer-by-layer release // X. Li, M. Vieweger, P. Guo // Nanoscale. 2020. №12 (31). P. 16514–16525. Doi: 10.1039/d0nr02614j.
11. Folic acid-functionalized magnetic nanoprobes via a PAMAM dendrimer/SA-biotin mediated cascade-amplifying system for the efficient enrichment of circulating tumor cells / X. Meng [et al.] // Biomater Sci. 2020. №8 (22). P. 6395–6403. Doi: 10.1039/d0bm01212b.
12. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrugresistant tumors using multifunctional dendrimer/carbon dot nanohybrids / D. Li [et al.] // Bioact Mater. 2020. №6 (3). P. 729–739. Doi: 10.1016/j. bioactmat.2020.09.015.
13. Cooper R.C. Duplex of Polyamidoamine Dendrimer/Custom-Designed NuclearLocalization Sequence Peptide for Enhanced Gene Delivery / R.C. Cooper, H. Yang // Bioelectricity. 2020. №2 (2). P. 150–157. Doi: 10.1089/bioe.2020.0009.
14. Antioxidant, Enzyme, and H2O2-Triggered Melanoma Targeted Mesoporous OrganoSilica Nanocomposites for Synergistic Cancer Therapy / H. W. Choi [et al.] // Antioxidants (Basel). 2022. №11. Р. 2137. Doi: 10.3390/antiox11112137.
15. Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells / J.G. Croissant [et al.] // Front Mol Biosci. 2016. №3. P. 1. Doi: 10.3389/fmolb.2016.00001.
16. Hyaluronic acid functionalized biodegradable mesoporous silica nanocomposites for efficient photothermal and chemotherapy in breast cancer / W. Zhan [et al.] // Nanotechnology. 2021. №32 (16). P. 165703. Doi: 10.1088/1361–6528/abda74.
17. Multifunctional silica nanocomposites prime tumoricidal immunity for efficient cancer immunotherapy / L. Yang [et al.] // J Nanobiotechnology. 2021. №19 (1). P. 328. Doi: 10.1186/s12951–021–01073–2.
18. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites / H. Yang [et al.] // Biomater Sci. 2017. №5(5). P. 1001–1013. Doi: 10.1039/c7bm00043j.
19. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy / A. Zhang [et al.] // Adv Mater. 2023. №35 (45). P. e2303722. Doi: 10.1002/adma.202303722.
20. Phytoestrogen-derived multifunctional ligands for targeted therapy of breast cancer / Y. Zhang [et al.] // Asian J Pharm Sci. 2023. №18(4). P. 100827. Doi: 10.1016/j.ajps.2023.100827.
21. Chemotherapy Mediated by Biomimetic Polymeric Nanoparticles Potentiates Enhanced Tumor Immunotherapy via Amplification of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction / G. Yunqi [et al.] // Adv. Mater. 2022. 34 P. 2206861.
22. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity / S. Shen [et al.] // J Control Release. 2023. №355 P. 171–183. Doi: 10.1016/j.jconrel.2023.01.076.
23. Lactoferrinand Dendrimer-Bearing Gold Nanocages for Stimulus-Free DNA Delivery to Prostate Cancer Cells / J. Almowalad [et al.] // Int J Nanomedicine. 2022. №17. P. 1409–1421. Doi: 10.2147/IJN.S347574.
24. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors / L. Ye [et al.] // J Exp Clin Cancer Res. 2021. №40(1). P. 303. Doi: 10.1186/s13046–021–02105–3.
25. Dendrimer-Cu(II) Complexes Mediate Enzyme Delivery for Lactate Depletion-Enhanced Combinational Treatment of Leukemia and Glioma / A. Li [et al.] // Adv. Funct. Mater. 2024. 24 Nov. Doi: 10.1002/adfm.202420825.
26. Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram Local Immune Microenvironment Against Tumor Growth and Metastasis / G. Yue [et al.] // Biomacromolecules. 2024. №21. Doi: 10.1021/ acs.biomac.4c01249.].
27. Non-viral systems based on PAMAM-calix-dendrimers for regulatory siRNA delivery into cancer cells / P. Padnya [et al.] // Int. J Mol. Sci. 2024. №25 (23). P. 12614. Doi:10.3390/ijms252312614.
Рецензия
Для цитирования:
Становая А., Терехова М., Абашкин В., Улащик Е., Щербин Д. Дендримерные многофункциональные комплексы для генетической терапии рака. Наука и инновации. 2025;1(1):78-83. https://doi.org/10.29235/1818-9857-2025-01-78-83
For citation:
Stanovaya A., Terekhova M., Abashkin V., Ulashchik E., Shcherbin D. Dendrimer multifunctional complexes for genetic therapy of cancer. Science and Innovations. 2025;1(1):78-83. (In Russ.) https://doi.org/10.29235/1818-9857-2025-01-78-83