Preview

Science and Innovations

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Carbon nanostructures are promising nanomaterials for sensors and theranostics

Abstract

The article shows the advantages of theranostics which is a modern multidisciplinary biomedical approach that combines diagnostics, therapy and monitoring the effect of mainly oncological diseases treatment.

About the Authors

T. Kulagova
Институт ядерных проблем БГУ
Belarus

Tatyana Kulagova 



N. Belko
Институт физики им. Б.И. Степанова НАН Беларуси
Belarus

Nikita Belko 



S. Kilin
Институт физики им. Б.И. Степанова НАН Беларуси
Belarus

Sergey Kilin 



References

1. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities / B.K. Kashyap [et al.] // ACS Omega. 2023. Vol. 8, №16. P. 14290–14320.

2. Patel K.D. Carbon-based nanomaterials as an emerging platform for theranostics / K.D. Patel, R.K. Singh, H.W. Kim // Materials Horizons. 2019. Vol. 6. P. 434–469.

3. Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications / G. Speranza // Nanomaterials. 2021. Vol. 11, No 4. P. 967.

4. Large Metal Ions in a Relatively Small Fullerene Cage: The Structure of Gd3N@C2(22010)-C78 Departs from the Isolated Pentagon Rule / C.M. Beavers [et al.] // Journal of American Chemical Society. 2009. Vol. 131. P. 11519–11524.

5. Circulation and long-term fate of functionalized biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy / Z. Liu [et al.] // PNAS. 2008. Vol. 105. P. 1410–1415.

6. Carbon dots for in vivo bioimaging and theranostics / J. Du [et al.] // Small. 2019. Vol. 15, №32. P. 1805087.

7. Synthesis of carbon dots with multiple color emission by controlled graphitzation and surface functionalization / X. Miao [et al.] // Advanced Materials. 2018. Vol. 30. P. 1704740.

8. Visualizing hypochlorous acid production by human neutrophils with fluorescent graphene quantum dots / L. Golubewa [et al.] // Nanotechnology. 2022. Vol. 33, №9. P. 095101.

9. Photostability and phototoxicity of graphene quantum dots interacting with red blood cells / T. Kulahava [et al.] // Journal of Photochemistry and Photobiology B: Biology. 2023. Vol. 248 . P. 112800.

10. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing / Luo [et al.] // Journal of Nanobiotechnology. 2021. Vol. 19, №320.

11. Superoxide anion turns on the fluorescence of carbon dots-ferric complex for sensing / J. Yue [et al.] // Microchemical Journal. 2021. Vol. 168, №106412.

12. pH-responsible fluorescent carbon nanoparticles for tumor selective theranostics via pH-turn on/off fluorescence and photothermal effect in vivo and in vitro / E.B. Kang [et al.] // Nanoscale. 2018. Vol. 10. P. 2512–2523.

13. Near‐infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging / C.L. Shen [et al.] // Advanced Science. 2020. Vol. 7, №1903525.

14. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer / B.B. Wang [et al.] // Biotechnology Letters. 2016. Vol. 38, №1. P. 191–201.

15. Nitrogen and boron dual-doped graphene quantum dots for near-infrared second window imaging and photothermal therapy / H. Wang [et al.] // Applied Materials Today. 2019. Vol. 14. P.108–117.

16. Single -molecule sc ale magnetic resonance spectroscopy using quantum diamond sensors / J. Du [et al.] // Reviews of Modern Physics. 2024. Vol. 96, № 2. P. 025001.

17. Векторная магнитометрия с помощью одиночного комплекса NV – 13C в алмазе / А.П. Низовцев [и др.] // Журнал прикладной спектроскопии. – 2022. Т. 89, №6. С. 807–814.

18. Wrachtrup, J. Quantum computation using the 13C nuclear spins near the single NV defect center in diamond / J. Wrachtrup, S.Y. Kilin, A.P. Nizovtsev // Optics and Spectroscopy. 2001. Vol. 91. P. 429–437.

19. Pezzagna, S. Quantum computer based on color centers in diamond / S. Pezzagna, J. Meijer // Applied Physics Reviews. 2021. Vol. 8, №1. P. 011308.

20. All-optical brain thermometry in freely moving animals / I.V. Fedotov, M.A. Solotenkov, M.S. Pochechuev, O.I. Ivashkina, S.Ya. Kilin, K.V. Anokhin, A.M. Zheltikov // ACS Photonics. 2020. Vol. 7, №12. Р. 3353–3360.

21. All-optical thermometry with NV and SiV color centers in biocompatible diamond microneedles / L. Golubewa [et al.] // Advanced Optical Materials. 2022. Vol. 10. P. 2200631.

22. Hysteresis and Stochastic Fluorescence by Aggregated Ensembles of Graphene Quantum Dots / N. Belko [et al.] // Journal of Physical Chemistry C. 2022. Vol. 126, №25. P. 10469–10477.

23. Single-photon spectroscopy and emission statistics of graphene quantum dots in organic structures / N.V. Belko [et al.] // Journal of Applied Spectroscopy. 2023. Vol. 90. P. 316–324.

24. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots / A.M. Chizhik [et al.] // Nano letters. 2016. Vol. 16, №1. P. 237–242.

25. Применение спектроскопии комбинационного рассеяния для анализа распределения углеродных нанотрубок в клетках / Е.Н. Голубева [и др.] // Журнал прикладной спектроскопии. 2018. Т. 85, №6. С. 999–1005.

26. Rapid and delayed effects of single-walled carbon nanotubes in glioma cells / L.N. Golubewa [et al.] // Nanotechnology 2021. Vol. 32, №50. P. 505103.

27. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength elec tric field: Promising approach in cancer nanotherapy / L. Golubewa [et al.] // Biochemical and Biophysical Research Communications. 2020. Vol. 529, №3. P. 647–651.

28. Golubewa L. Specificit y of carbon nanotube accumulation and distribution in cancer cells revealed by K-means clustering and principal component analysis of Raman spe c tra / L. Golubewa, I. Timoshchenko, T. Kulahava // Analyst. 2024. Vol. 149, №9. P. 2680–2696.

29. In vivo near-infrared mediated tumor destruction by photothermal effec t of carbon nanotubes / H. K. Moon [et al.] // ACS Nano. 2009. Vol. 3, №11. P. 3707–3713.

30. In vivo theranostics with near-infrared-emitting carbon dots–highly efficient photothermal therapy based on passive targeting af ter intravenous administration / X. Bao [et al.] // Light: Science and Applications. 2018. Vol. 7, №1. P. 91.

31. Single-walled carbon nanotubes as a photo-thermoacoustic cancer theranostics agent: theory and proof of the concept experiment / L. Golubewa [et al.] // Scientific Reports. 2020. Vol. 10. P. 22174.


Review

For citations:


Kulagova T., Belko N., Kilin S. Carbon nanostructures are promising nanomaterials for sensors and theranostics. Science and Innovations. 2024;(6):14-19. (In Russ.)

Views: 45


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)