Operating principles of social media algorithmic systems
https://doi.org/10.29235/1818-9857-2025-12-60-64
Abstract
This study investigates the operating principles of social media algorithms to develop evidence-based recommendations for enhancing marketing strategies amid the digital transformation of the economy. By reconstructing the algorithms' logic, derived from the platforms' economic objectives, a conceptual model of content ranking is proposed. This model frames ranking as a function of weighted factors operating within a set of predefined constraints. The study systematizes the types of content prioritized by these algorithms to achieve their goals: relevant, engaging, interaction-provoking, and loyalty-fostering content. The findings demonstrate that an effective SMM strategy must be oriented toward creating content that is simultaneously relevant to the target audience's interests and aligned with the platform's economic goals of user retention and attention monetization. The proposed model provides a theoretical foundation for further applied research aimed at identifying and verifying key ranking factors.
About the Authors
M. BaturaБеларусь
Mikhail Batura
I. Marakhina
Беларусь
Ina Marakhina
U. Parkhimenka
Беларусь
Uladzimir Parkhimenka
References
1. Graffius S. How Algorithms Shape the User Experience on Social Media Platforms // https://scottgraffius.com/blog/files/tag-how-algorithms-shape-the-userexperience-on-social-media-platforms.html.
2. Guide to beating social media algorithms / Instruction by Adobe Express // https://www.adobe.com/learn/express/web/increase-social-media-visibility.
3. Narayanan A. Understanding Social Media Recommendation Algorithms // Knight First Amendment Institute at Columbia University // https://knightcolumbia.org/content/understanding-social-media-recommendation-algorithms.
4. Никитин А.Ю. Алгоритмы социальных сетей: вызовы и возможности для современного маркетолога // Научный результат. Технологии бизнеса и сервиса. 2025. Т. 11, №1. С. 123–138. Doi: 10.18413/2408-9346-2025-11-1-0-9.
5. Metzler H., Garcia D. Social Drivers and Algorithmic Mechanisms on Digital Media // Perspectives on Psychological Science. 2023. Vol. 19, №5. P. 735–748.
6. Bak-Coleman J.B., Alfano M., Barfuss W., Bergstrom C.T., Centeno M.A., Couzin I.D., Donges J.F., Galesic M., Gersick A.S., Jacquet J., Kao A.B., Moran R.E., Romanczuk P., Rubenstein D.I., Tombak K.J., Van Bavel J.J., Weber E.U. Stewardship of global collective behavior // Proceedings of the National Academy of Sciences, USA. 2021. Vol. 118, №27. Article e2025764118. Doi:10.1073/pnas.2025764118.
7. Koumchatzky N. Using Deep Learning at Scale in Twitter’s Timelines / N. Koumchatzky, A. Andryeyev / X Engineering // https://blog.x.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.
8. Lewandowsky S., Robertson R.E., DiResta R. Challenges in Understanding Human-Algorithm Entanglement During Online Information Consumption // Perspectives on Psychological Science. 2024. Vol. 19, №5. P. 758–766. Doi:10.1177/17456916231180809.
9. Menczer F. Facebook whistleblower Frances Haugen testified that the company’s algorithms are dangerous – here’s how they can manipulate you / The Conversation // https://theconversation.com/facebook-whistleblowerfrances-haugen-testified-that-the-companys-algorithms-are-dangerous-hereshow-they-can-manipulate-you-169420.
10. Milli S., Carroll M., Wang Y., Pandey S., Zhao S., Dragan A.D. Engagement, user satisfaction, and the amplification of divisive content on social media // PNAS Nexus. 2025. Vol. 4, Issue 3. Art. pgaf062. Doi:10.1093/pnasnexus/pgaf062.
Review
For citations:
Batura M., Marakhina I., Parkhimenka U. Operating principles of social media algorithmic systems. Science and Innovations. 2025;(12):60-64. (In Russ.) https://doi.org/10.29235/1818-9857-2025-12-60-64
JATS XML


















