Preview

Science and Innovations

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Modern thin-film photoelectric converters based on chalcogenide materials

Abstract

All types of thin-film solar cells and the evolution of their variants based on chalcogenide materials are described, and a scenario for the three most promising types development is presented.

About the Authors

V. Gremenok
НПЦ НАН Беларуси по материаловедению
Belarus

Valery Gremenok



M. Tivanov
БГУ
Belarus

Mikhail Tivanov



References

1. Потребление электроэнергии в регионах и странах мира // https://www.eeseaec.org/potreblenie-elektroenergii-v-regionah-i-stranah-mira.

2. V. Smil. Energy in Nature and Society: General Energetics of Complex Systems. – The MIT Press, 2008.

3. M. A. Green [et al]. Solar cell efficiency tables (Version 61) // Progress in Photovoltaics: Research and Applications. 2023. Vol 31, №1. Р. 3–16.

4. W. Z. Shen, Y. X. Zhao, F. Liu. Highlights of mainstream solar cell efficiencies in 2021 // Frontiers in Energy. 2022. Vol. 16, №1. P. 1–8.

5. T. D. Lee, A. U. Ebong. A review of thin film solar cell technologies and challenges // Renewable and Sustainable Energy Reviews. 2017. Vol. 70. Р. 1286– 1297.

6. T. Matsui [et al]. High-efficiency amorphous siliconsolar cells: impact of deposition rate on metastability // Appl Phys Lett. 2015. Vol. 106, №5. Р. 053901(5).

7. M. Stuckelberger [et al]. Review: Progress in solar cells from hydrogenated amorphous silicon // Renewable and Sustainable Energy Reviews. 2017. Vol. 76. Р. 1497–1523.

8. Гременок В. Ф. [и др.]. Тонкопленочные солнечные элементы на основе полупроводниковых материалов Cu(In, Ga)(Se, S)2 со структурой халькопирита. – Баку, 2013.

9. J. Ramanujam, U. P. Singh. Copper indium gallium selenide based solar cells – a review // Energy & Environmental Science. 2017. Vol. 10. Р. 1306–1319.

10. X. Liu [et al]. The current status and future prospects of kesterite solar cells: a brief review // Progress in Photovoltaics: Research and Applications. 2016. Vol. 24. Р. 879–898.

11. S. Zhuk [et al]. Critical review on sputter- deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance // Solar Energy Materials and Solar Cells. 2017. Vol. 171. Р. 239–252.

12. K. V. Gunavathy [et al]. A review on growth optimization of spray pyrolyzed Cu2ZnSnS4 chalcogenide absorber thin film // Int J Energ Res. 2019. Vol. 43. Р. 1–39.

13. С. А. Башкиров [и др]. Тонкие пленки Cu2ZnSn(S, Se)4 для использования в солнечных элементах третьего поколения // Альтернативная энергетика и экология. 2016. Т. 203–204. С. 31–53.

14. Содержание элементов в земной коре // https://ru.wikipedia.org/wiki.

15. T. Sinha [et al]. A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters // J Mater Sci. 2019. Vol. 54. Р. 12189–12205.

16. A. Romeo, E. Artegiani. CdTe-Based Thin Film Solar Cells: Past, Present and Future // Energies. 2021. Vol. 14. Р. 1684 (24).

17. M. G. Buonomenna. Inorganic Thin-Film Solar Cells: Challenges at the Terawatt-Scale // Symmetry. 2023. Vol. 15. P 1718 (31).


Review

For citations:


Gremenok V., Tivanov M. Modern thin-film photoelectric converters based on chalcogenide materials. Science and Innovations. 2023;(11):57-62. (In Russ.)

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)