New biomedical cell products for immunotherapy of human diseases
https://doi.org/10.29235/1818-9857-2022-2-15-23
Abstract
Cellular therapy develops rapidly throughout the world. The list of diseases of various etiologies that are treated with biomedical cellular products is constantly growing. The Center for Immunology and Allergology was opened in the The Institute of Biophysics and Cell Engineering of National Academy of Science of Belarus in 2021. Since that the developing of new biomedical cell products for the correction of immunopathological conditions was started in collaboration with the Belarusian State Medical University. The technologies for producing of biomedical cellular products based on cytokine induced killer cells for the treatment of oncological diseases of the urogenital area, tolerogenic dendritic cells for the treatment of type 1 diabetes, and regulatory T lymphocytes for the treatment of sclerosis were developed.
About the Authors
N. AntonevichBelarus
Natalya Antonevich
A. Hancharou
Belarus
Andrei Hancharou
O. Timokhina
Belarus
Oksana Timokhina
E. Rynda
Belarus
Elena Rynda
Ya. Minich
Belarus
Yana Minich
A. Prokhorov
Belarus
Alexander Prokhorov
T. Mokhort
Belarus
Tatiana Mokhort
K. Chizh
Belarus
Konstantin Chizh
References
1. О здравоохранении: Закон Респ. Беларусь, 18 июня. 1993 г., №2435 XII // Pravo. by // https://pravo.by/document/?guid=3871&p0=v19302435.
2. Современные методы диагностики, лечения и профилактики заболеваний – 2022 // http://med.by/methods/.
3. Реестры УП «Центр экспертиз и испытаний в здравоохранении» // РУП «Центр экспертиз и испытаний в здравоохранении» // 2022 // https://www.rceth.by/Refbank/reestr_biomeditsinskih_kletochnih_produktov/results.
4. Use of a SCID mouse/human lymphoma model to evaluate cytokine induced killer cells with potent antitumor cell activity / I. G. Schmidt Wolf [et al.] // J. Exp. Med. 1991. Vol. 174. №1. P. 139–149.
5. CD58/LFA 3 and IL 12 provided by activated monocytes are critical in the in vitro expansion of CD56+ T cells / R. D. Lopez [et al.] // Cancer Immunol. Immunother. 2001. Vol. 49, №12. P. 629–640.
6. Y. C. Linn. Generation of cytokine induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts / Y. C. Linn, L. C. Lau, K. M. Hui / Br. J. Haematol. 2002. Vol. 116, №1. P. 78–86.
7. Alloreactivity and anti tumor activity segregate within two distinct subsets of cytokine induced killer (CIK) cells: implications for their infusion across major HLA barriers / D. Sangiolo [et al.] // Int. Immunol. 2008. Vol. 20, №7. P. 841–848.
8. T. L. Schmidt. A killer choice for cancer immunotherapy / T. L. Schmidt, R. S. Negrin, C. H. Contag / Imunol. Res. 2014. Vol. 58, №2–3. P. 300–306.
9. Enhanced killing of human B cell lymphoma targets by combined use of cytokine induced killer cell (CIK) cultures and anti CD20 antibodies / A. Pievani [et al.] // Blood. 2011. Vol. 117, №2. P. 510–518.
10. Cytokine induced killer cells as pharmacological tools for cancer immunotherapy / X. Gao [et al.] // https://www.frontiersin.org/articles/10.3389/fimmu.2017.00774/full.
11. Influence of autologous dendritic cells on cytokine induced killer cell proliferation, cell phenotype and antitumor activity in vitro / J. Cao [et al.] // Oncol Lett. 2016. Vol. 12, №3. P. 2033–2037.
12. Cytokine induced killer (CIK) cells in leukemia patients (CIK2) // https://clinicaltrials.gov/ct2/show/NCT01186809.
13. Feasibility and safety of adoptive immunotherapy with CIK cells after cord blood transplantation / M. Introna [et al.] // Biol. Blood Marrow Transplant. 2010. Vol. 16, №11. P. 1603–1607.
14. Efficacy and safety of Immuncell LC group and non treatment group in hepatocelluar carcinoma patients // clinicaltrials.gov/ct2/show/NCT00699816.
15. Adjuvant immunotherapy with autologous cytokine induced killer cells for hepatocellular carcinoma / J. H. Lee [et al.] // Gastroenterology. 2015. Vol. 148, №7. P. 1383–1391.
16. Autologous cytokine induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma / M. Shi [et al.] // World J. Gastroenterol. 2004. Vol. 10, №8. P. 1146–1151.
17. Cytokine induced killer cell therapy for modulating regulatory T cells in patients with non small cell lung cancer / B. Yu [et al.] // Exp. Ther. Med. 2017. Vol. 14, №1. P. 831–840.
18. W. Zou. Regulatory T cells, tumour immunity and immunotherapy // Nat Rev Immunol. 2006. №6(4). Р. 295–307. doi: 10.1038/nri1806. PMID: 16557261.
19. P. Lapierre, Lamarre A. Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis // J Immunol Res. – 2015;2015:479703. doi: 10.1155/2015/479703. Epub 2015 May 28. PMID: 26106627; PMCID: PMC4464004.
20. Y. Yao, CL. Chen, D. Yu, Z. Liu. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy // Allergy. 2021. 76(2). P. 456–470. doi: 10.1111/all.14639. Epub 2020 Nov 4. PMID: 33098663.
21. Sakaguchi S., Sakaguchi N., Asano M. [et al.] Immunologic self tolerance maintained by activated T cells expressing IL 2 receptor alpha chains (CD25). Breakdown of a single mechanism of self tolerance causes various autoimmune diseases // J Immunol. 1995. 155(3). P. 1151–1164. PMID: 7636184.
22. J. Tellier, J. P. van Meerwijk, P. Romagnoli. An MHC linked locus modulates thymic differentiation of CD4+CD25+Foxp3+ regulatory T lymphocytes // Int Immunol. 2006. 18(11). P. 1509–1519. doi:10.1093/intimm/dxl084.
23. P. Romagnoli, J. Tellier, J. P. van Meerwijk. Genetic control of thymic development of CD4+CD25+FoxP3+ regulatory T lymphocytes // Eur J Immunol. 2005. 35(12). P. 3525–3532. doi:10.1002/eji.200535225.
Review
For citations:
Antonevich N., Hancharou A., Timokhina O., Rynda E., Minich Ya., Prokhorov A., Mokhort T., Chizh K. New biomedical cell products for immunotherapy of human diseases. Science and Innovations. 2022;(2):15-23. (In Russ.) https://doi.org/10.29235/1818-9857-2022-2-15-23