

Intelligent mechanics
Abstract
The authors show the opportunities for the new direction in mechanics development based on the artificial intelligence methods introduced into the mathematical modeling of real physical processes and the specifics of their application.
References
1. Журавков М.А. Технологии искусственного интеллекта и интеллектуальные системы компьютерного моделирования и инженерных расчетов. Вводный курс: учеб. пособие / М.А. Журавков.—Минск, 2024.
2. PaezT.L. Neural networks in mechanical system simulation, identification and assessment / T.L.Paez // Shock and Vibration. 1993. №2(1). P.177–199.
3. BishopC.M. Neural networks for pattern recognition / C.M. Bishop. – Oxford, 1995.
4. Haykin S. Neural networks: acomprehensive foundation / S. Haykin. – Prentice Hall, 1999.
5. Waszczyszyn Z. Neural Networks in the Analysis and Design of Structures / Z. Waszczyszyn.– Springer, 1999.
6. Waszczyszyn Z. Artificial neural networks in civil engineering: another five years of research in Poland / Z. Waszczyszyn // Computer Assisted Mechanics and Engineering Sciences. 2011. №18. P.131–146.
7. Butler K.T. Machine learning for molecular and material science / K.T. Butler [et al.]. // Nature. 2018. №559. P.547–555.
8. Balokas G. Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty / G. Balokas, S.Czichon, R. Rolfes // Composite Structures. 2018. №183. P.550–562.
9. Luna P. D. Use machine learning to find energy materials / P. D.Luna [etal.] // Nature. 2017. №552. P.23–27.
10. Pham M.-S. Damage-tolerant architected materials inspired by crystal microstructure / M.-S. Pham [etal.] // Nature. 2019. №565. P.305–311.
11. Guo K. Artificial intelligence and machine learning in design of mechanical materials / K. Guo [etal.] // Mater Horizons. 2021. №8(4). P.1153–1172.
12. Yago D. Machine learning in solid mechanics: Application to acoustic metamaterial design / D.Yago [etal.] // https://onlinelibrary.wiley.com/doi/book/10.1002/0471784192.
13. Jin H. Recent advances and applications of machine learning in experimental solid mechanics: a review / H. Jin, E. Zhang, H.D. Espinosa // Applied Mechanics Reviews. 2023. №75 (6). Art. N061001. Doi. 10.1115/1.4062966.
14. Karniadakis G.E.Physics-informed machine learning / G.E. Karniadakis [etal.] // Nature Reviews Physics. 2021. №3(6). P.422–440.
15. Raissi M.Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations / M. Raissi, P. Perdikaris, G.E. Karniadakis // Journal of Computational Physics. 2019. №378. P.686–707.
16. Roy A.M. Deep learning-accelerated computational framework based on physics informed neural network for the solution of liner elasticity / A.M. Roy [etal.] // Neural networks. 2023. №162. P.472–489.
17. ArgatovI. Artificial neural networks (ANNs) as a novel modelling technique in tribology / I. Argatov // Frontiers of Mechanical Engineering. 2019. №5(30).
18. Li D. Hybrid neural network-based prediction model for tribological properties of polyamide6 based friction material / D.Li, R.Lv, Y.You // Polymer composites. 2017. №38(8). P.1705–1711.
19. Margenberg N. DNN-MG: A hybrid neural network/finite element method with applications to 3D simulations of the Navier-Stokes equations / N. Margenberg [et al.] // Computer Methods in Applied Mechanics and Engineering. 2024. №420. Art. N116692
20. Cybenko G. Approximation by superpositions of asigmoidal function / G.Cybenko // Mathematics of Control, Signals and Systems. 1989. №2. P.303–314. Doi.org/10.1016/j.cma.2023.116692.
21. Мармыш Д.Е. Применение логистической регрессии квычислению повреждаемости твердого деформируемого тела / Д.Е. Мармыш // Механика машин, механизмов и материалов. 2021. №2(54). С.46–53.
22. Stoffel M. Artificial neural networks and intelligent finite elements in non-linear structural mechanics / M.Stoffel, F. Bamer, B. Markert // Thin-Walled Structures. 2018. №131. P.102–106.
23. Stoffel M. Artificial neural networks in structural dynamics / M.Stoffel, F. Bamer, B. Markert // Proceedings in Applied Mathematics and Mechanics. 2019. №19, e201900128.
24. Желткович А.Е. Применение нейросетевых алгоритмов при разработке акустических методов контроля прочности бетона / А.Е. Желткович [и др.] // Вестник Брестского государственного технического университета. 2024. №1(133). С.101–109.
25. Соловьев А.Н. Определение упругих и диссипативных свойств материалов с помощью сочетания метода конечных элементов и комплекснозначных искусственных нейронных сетей / А.Н.Соловьев, Н.З.Ч. Занг // Вестник ДГТУ. 2014. Т.14, №2(77). С.84–92.
26. Соловьев А.Н.Реконструкция дефектов вупругих телах сочетанием генетического алгоритма и метода конечных элементов / А.Н.Соловьев, М.Ю. Шевцов // Вестник ДГТУ. 2016. Т.16, №2(85). С.5–12.
27. Журавков М.А. Технологии искусственного интеллекта: системы компьютерного моделирования в прикладных исследованиях / М.А. Журавков, С.М. Босяков, С.С. Щербаков // Наука и инновации. 2023. №4(421). С.43–51.
Review
For citations:
Marmysh D., Zhuravkov M. Intelligent mechanics. Science and Innovations. 2025;(7):27-31. (In Russ.)