Preview

Science and Innovations

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The artificial intelligence in breast cancer diagnosis

https://doi.org/10.29235/1818-9857-2025-3-76-83

Abstract

The article examines the use of artificial intelligence (AI) technologies for the diagnosis of breast cancer. A qualitative and economic assessment of the use of the «Faust View» software and hardware complex based on AI algorithms was conducted. The study found that the conclusions formulated using this system are comparable in accuracy to the results obtained by radiologists. This indicates the potential for its implementation in clinical practice to reduce the workload on medical personnel. The economic efficiency of this approach was demonstrated, showing that it could be a cost-effective solution for improving healthcare outcomes and managing resources more effectively

About the Authors

Dmitry Los
Гомельский государственный медицинский университет
Belarus


Tamara Sharshakova
Гомельский государственный медицинский университет
Belarus


References

1. Первые 10000 маммографических исследований, выполненных в рамках услуги «Описание и интерпретация данных маммографического исследования с использованием искусственного интеллекта» / Ю.А. Васильев [и др.] // Менеджер здравоохранения. 2023. №8. С. 54–67. Doi: 10.21045/1811–0185–2023–8–54–67.

2. Возможности искусственного интеллекта в оценке риска рака молочной железы на маммографических изображениях (клинические примеры) / В.А. Солодкий [и др.] // Вестник Российского научного центра рентгенорадиологии. 2023. №1. С. 25–31.

3. Croskerry P. Achieving quality in clinical decision making: cognitive strategies and detection of bias //Acad Emerg Med. 2002. №9(11). P. 1184–1204. Doi: 10.1111/j.1553–2712.2002.tb01574.x.

4. Захарова Н.А. / Рентгенологическая плотность молочных желез как фактор риска развития рака молочной железы // Креативная хирургия и онкология. 2012. №4. С. 52–57.

5. Волчек В.С. Пути повышения эффективности скрининга рака: выявление и преодоление барьеров / В.С. Волчек, Т.М. Шаршакова // Современные проблемы здравоохранения и медицинской статистики. 2023. №4. С. 731–750.

6. The value of computer aided detection system in breast cancer difficult to detect at screening mammography / D.V. Pasynkov [et al.] // Rejr. 2019. №9 (2). Р. 107–118.

7. Двойной просмотр результатов маммографии с применением технологий искусственного интеллекта: новая модель организации массовых профилактических исследований / Ю.А. Васильев [и др.] // Digital Diagnostics. 2023. Т. 4. №2. Doi: 10.17816/DD321423.

8. Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis / C. Leibig [et al.] // Lancet Digit Health. 2022. №4(7). P. e507-e519. Doi: 10.1016/S2589–7500(22)00070-X.

9. International evaluation of an AI system for breast cancer screening / S.M. McKinney [et al.] // Nature. 2020. Oct. №586, 577. P. 89–94. Doi: 10.1038/s41586019 1799 6.

10. Can artificial intelligence reduce the interval cancer rate in mammography screening? / K. Lång [et al.] // 2021. Eur Radiol. №31. Р. 5940–5947.

11. Implications for downstream workload based on calibrating an artificial intelligence detection algorithm by standalone-reader or combined-reader sensitivity matching / K. Dembrower [et al.] // 2023. J Med Imaging (Bellingham). №10 (S2). P. S22405–S22405.

12. External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms / M. Salim [et al.] // JAMA Oncol. 2020. №6 (10). P. 1581–1588. Https://doi.org/10.1001/jamaoncol.2020.3321.

13. Effect of artificial intelligencebased triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study / K. Dembrower [et al.] // Lancet Digit Health. 2020. №2 (9). P. e468-e474.

14. An artificial intelligence–based mammography screening protocol for breast cancer: outcome and radiologist workload / A. D. Lauritzen [et al.] // Radiology. 2022. №304(1). P. 41–49.

15. Detection of breast cancer with mammography: effect of an artificial intelligence support system / a. rodríguez-ruiz [et al.] // radiology. 2019. №290 (2). p. 305–314. https://doi.org/10.1148/radiol.2018181371.


Review

For citations:


Los D., Sharshakova T. The artificial intelligence in breast cancer diagnosis. Science and Innovations. 2025;(3):76–83. (In Russ.) https://doi.org/10.29235/1818-9857-2025-3-76-83

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)