Preview

Science and Innovations

Advanced search

Gallium nitride opto-, micro- and microwave electronics

Abstract

The article considers the nitride technologies development history in the Republic of Belarus, as well as the formation and main achievements of domestic epitaxy of III-nitride nanoheterostructures

About the Author

E. Lutsenko
Институт физики  им. Б.И. Степанова НАН Беларуси
Belarus


References

1. Yablonskii G.P. Optical properties and recombination mechanism in GaN and GaN: Mg grown by metalorganic vapour phase epitaxy / G.P. Yablonskii, A.L. Gurskii [et al.] // Journal of Electronic Materials. 1998. Vol. 27, №4. Р. 222–228.

2. Yablonskii G.P. Luminescence and lasing in InGaN/GaN multiple quantum well heterostructures grown at different temperatures / G.P. Yablonskii, V.N. Pavlovskii [et al.] // Applied Physics Letters. Vol. 85. P. 5158–5160.

3. Yablonskii G.P. Blue InGaN/GaN multiple quantum well optically pumped lasers with emission wavelength in the spectral range of 450–470 nm / G.P. Yablonskii, E.V. Lutsenko [et al.] // Applied Physics Letters. 2001. Vol. 29, №13. P. 1953–1955.

4. Yablonskii G. P. Luminescence and stimulated emission from GaN on silicon substrates heterostructures / G.P. Yablonskii, E.V. Lutsenko [et al.] // Physica status solidi (a). 2002. Vol. 192, №1. P. 54–59.

5. Lutsenko E.V. Growth, Stimulated Emission, Photoand Electroluminescence of InGaN/ GaN EL-Test Heterostructures / E.V. Lutsenko [et al.] // Physica status solidi (c). 2002. №1. P. 272–275.

6. The Nobel Prize in Physics 2014 // https://www.nobelprize.org/prizes/physics/2014/summary/.

7. Sedova I.V. Integration of Cd(Zn)Se/ZnSe and GaN-based lasers for optoelectronic applications in a green spectral range / I.V. Sedova [et al.] // Physica status solidi (c). 2004. Vol. 1, iss. 4. Р. 1030–1033.

8. S.V. Sorokin. Violet-green electrically pumped laser converter with output power over 150 mW / S.V. Sorokin [et al.] // Electronic Letters. 2012. Vol. 48, iss. 2. Р. 118–119.

9. Lutsenko E.V. Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow – green spectral region / E.V. Lutsenko [et al.] // Quantum Electronics. 2013. №43 (5). Р. 418–422.

10. Vainilovich A.G. Microchip laser converter based on InGaN laser diode and (Zn)CdSe quantum dot heterostructure / A.G. Vainilovich [et al.] // Physica Status Solidi (b). 2016. Vol. 253. P. 1498–1502.

11. A. Alyamani A. Internal laser characteristics of optically pumped yellow–orange lasers / A. Alyamani [et al.] // Physica Status Solidi B. 2016. №3.

12. Jmerik V.N. Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasma-assisted molecular beam epitaxy on c-Al203 / V.N. Jmerik [et al.] // Physica Status Solidi A. 2010. Vol. 207, iss. 6. P. 1313–1317.

13. Jmerik V.N. Plasma-assisted molecular beam epitaxy of AlGaN heterostructures for deep-ultraviolet optically pumped lasers / V.N. Jmerik [et al.] // Physica Status Solidi A. 2013. №3. P. 439–450.

14. Jmerik V.N. Structural and optical properties of PA MBE AlGaN quantum well heterostructures grown on c-Al2O3 by using fluxand temperature-modulated techniques / V.N. Jmerik [et al.] // Journal of Materials Research. 2015. Vol. 30, iss. 19. P. 2871–2880.

15. Jmerik V. Monolayer-range compositional modulations in AlxGa1-xN(x=0.6–0.75) layers grown using plasma-assisted molecular beam epitaxy under Me-rich conditions with an off-centered spatial distribution of activated nitrogen flux /

16. V. Jmerik [et al.] // Physica Status Solidi. 2022. Vol. 219, iss. 6. Р. 2100550.

17. Кузнецова Н. В. Cолнечно-слепые AlxGa1-xN (x>0,45) p–i–n-фотодиоды с поляризационно-легированным p-эмиттером / Н.В. Кузнецова и др. // Письма в ЖТФ. 2016. Т. 42, вып. 12. С. 57–63.

18. Nechaev D.V. Ultraviolet light-emitting diodes and photodiodes grown by plasmaassisted molecular beam epitaxy / D.V. Nechaev [et al.] // Journal of Physics. 2018. №3.

19. Семенов А. Н. Солнечно-слепые фотодиоды Шоттки на основе AlxGa1-xN (x = 0,55), выращенные методом ПА-МПЭ / А.Н. Семенов и др. // Письма ЖЭТФ. 2024. Т. 50, вып. 20. C. 16–19.

20. Lidow A. Efficient Power Conversion // https://www.datacenterdynamics.com/en/opinions/gan-technology-drives-power-density-in-data-centers//.

21. Oliver S. Fast-Forward to the GaNData Center // https://www.powerelectronicsnews.com/fast-forward-to-the-gan-data-center//.

22. Rzheutski M.V. Ultraviolet Stimulated Emission in AlGaN Layers Grown on Sapphire Substrates Using Ammonia and Plasma–Assisted Molecular Beam Epitaxy / M.V. Rzheutski [et al.] // Physica Status Solidi A. 2020. Vol. 217, iss. 14. 1900927.

23. Lutsenko E. V. Investigation of photoluminescence, stimulated emission, photoreflectance and 2DEG properties of double heterojunction AlGaN/GaN/AlGaN HEMT heterostructures grown by ammonia MBE / E.V. Lutsenko [et al.] // Physica Status Solidi A. 2018. Vol. 215, iss. 9. 1700602.

24. Alyamani A. AlGaN/GaN HEMT heterostructures grown by NH3 and combined PA-NH3 MBE / A. Alyamani [et al.] // Japanese Journal of Applied Physics. 2019. P. 244–250.

25. Petrov S.I. High temperature ammonia MBE – real way to improve crystal quality of nitride heterostructures / S.I. Petrov [et al.] // Journal of Crystal Growth. 2019. Vol. 514. Р. 40–44.

26. Луценко Е.В. Развитие и перспективы III-нитридных технологий. VII Конгресс физиков Беларуси. (26–28 апреля 2023): сб. науч. тр. / редкол.: С.Я. Килин (гл. ред.) [и др.].– Минск, 2023. С. 127–128.

27. Луценко Е. В. Перспективы III-нитридных технологий и их развитие в Беларуси // ПРИБОРОСТРОЕНИЕ – 2023/ Материалы 16-й Междунар. науч.-тех. конф. 15–17 ноября 2023 г., Минск / редкол.: О.К. Гусев (предс.) [и др.].– Минск, 2023. С. 10–12.


Review

For citations:


Lutsenko E. Gallium nitride opto-, micro- and microwave electronics. Science and Innovations. 2025;1(1):22-28. (In Russ.)

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)