Three-dimensional cell cultivation and bioprinting
https://doi.org/10.29235/1818-9857-2023-11-27-31
Abstract
The paper presents approaches to the formation of flat and three-dimensional cellular patterns using bioprinting methods, discusses the features of three-dimensional culture, when due to more intensive intercellular interactions the cell ensemble has properties that are not typical for single cells, the conditions necessary for the emergence of self-organization processes are created in the system of interacting cells, transformation into tissue-like and organ-like structures. Modern bioprinting methods provide increased productivity of these processes by engineering the additional levels of organization.
About the Authors
A. DenisovBelarus
Andrey Denisov
S. Pashkevich
Belarus
Svetlana Pashkevich
References
1. D. Sun [et al.]. Why 90% of clinical drug development fails and how to improve it? // Acta Pharm Sin B. 2022. Vol. 12. №7. P. 3049–3062.
2. A.B. Kunnumakkara [et al.]. Cancer drug development: The missing links // Experimental biology and medicine (Maywood N. J.). 2019. Vol. 244. №8. P. 663–689.
3. M. Adler, A. R. Chavan, R. Medzhitov. Tissue Biology: In Search of a New Paradigm // Annual Review of Cell and Developmental Biology. 2023. Vol. 39. №1. P. 67–89.
4. A. Xavier da Silveira dos Santos, P. Liberali. From single cells to tissue selforganization // The FEBS Journal. 2019. Vol. 286. №8. P. 1495–1513.
5. J. Lou, D. J. Mooney. Chemical strategies to engineer hydrogels for cell culture // Nature Reviews Chemistry. 2022. Vol. 6. №10. P. 726–744.
6. I. Matai [et al.]. Progress in 3D bioprinting technology for tissue/organ regenerative engineering // Biomaterials. 2020. Vol. 226. P. 119536.
7. L.S. Moreira Teixeira [et al.]. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering // Biomaterials. 2012. Vol. 33. №5. P. 1281–1290.
8. А.А. Денисов, А. В. Богданова, Т. А. Кулагова, Т. Е. Кузнецова, Д. П. Токальчик, С. Г. Пашкевич. Диффузия графеновых квантовых точек в срезы гиппокампа крысы in vitro // Новости медико-биологических наук. 2022. Т. 25. №4. Стр. 14–18.
9. F.M. Kievit [et al.]. Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment // Biomaterials. 2010. Vol. 31. №22. P. 5903–5910.
10. M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo-de Santiago. Advances in 3D bioprinting for the biofabrication of tumor models // Bioprinting. 2021. Vol. 21. Стр. e00120.
11. R. Augustine [et al.]. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy // Translational Oncology. 2021. Vol. 14. №4. P. 101015.
12. C. Tomasina [et al.]. Bioprinting Vasculature: Materials, Cells and Emergent Techniques // Materials (Basel). 2019. Vol. 12. №17. P. 2701.
13. C. Corrò, L. Novellasdemunt, V.S.W. Li. A brief history of organoids // American Journal of Physiology-Cell Physiology. 2020. Vol. 319. №1. P. С151–С165.
14. Denisov A.A. et al. Patterns of Electrical Activity Generated by Biological Neural Network in vitro // Open semantic technologies for intelligent systems. 2018. P. 265–268.
15. U.S. Bhalla, R. Iyengar. Emergent Properties of Networks of Biological Signaling Pathways // Science. 1999. Vol. 283. №5400. P. 381–387.
16. M. Thiebaut De Schotten, S. J. Forkel. The emergent properties of the connected brain // Science. 2022. Vol. 378. №6619. P. 505–510.
17. C. He [et al.]. Organoid bioprinting strategy and application in biomedicine: A review // IJB. 2023. Vol. 9. №6. P. 0112.
18. J. Chakraborty, S. Chawla, S. Ghosh. Developmental biology- inspired tissue engineering by combining organoids and 3D bioprinting // Current Opinion in Biotechnology. 2022. Vol. 78. P. 102832.
19. S.P. Paşca. Assembling human brain organoids // Science. 2019. Vol. 363. №6423. P. 126–127.
Review
For citations:
Denisov A., Pashkevich S. Three-dimensional cell cultivation and bioprinting. Science and Innovations. 2023;(11):27-31. (In Russ.) https://doi.org/10.29235/1818-9857-2023-11-27-31