Preview

Science and Innovations

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Three-dimensional cell cultivation and bioprinting

https://doi.org/10.29235/1818-9857-2023-11-27-31

Abstract

The paper presents approaches to the formation of flat and three-dimensional cellular patterns using bioprinting methods, discusses the features of three-dimensional culture, when due to more intensive intercellular interactions the cell ensemble has properties that are not typical for single cells, the conditions necessary for the emergence of self-organization processes are created in the system of interacting cells, transformation into tissue-like and organ-like structures. Modern bioprinting methods provide increased productivity of these processes by engineering the additional levels of organization.

About the Authors

A. Denisov
Белорусский государственный университет; Институт физиологии НАН Беларуси
Belarus

Andrey Denisov



S. Pashkevich
Институт физиологии НАН Беларуси
Belarus

Svetlana Pashkevich



References

1. D. Sun [et al.]. Why 90% of clinical drug development fails and how to improve it? // Acta Pharm Sin B. 2022. Vol. 12. №7. P. 3049–3062.

2. A.B. Kunnumakkara [et al.]. Cancer drug development: The missing links // Experimental biology and medicine (Maywood N. J.). 2019. Vol. 244. №8. P. 663–689.

3. M. Adler, A. R. Chavan, R. Medzhitov. Tissue Biology: In Search of a New Paradigm // Annual Review of Cell and Developmental Biology. 2023. Vol. 39. №1. P. 67–89.

4. A. Xavier da Silveira dos Santos, P. Liberali. From single cells to tissue selforganization // The FEBS Journal. 2019. Vol. 286. №8. P. 1495–1513.

5. J. Lou, D. J. Mooney. Chemical strategies to engineer hydrogels for cell culture // Nature Reviews Chemistry. 2022. Vol. 6. №10. P. 726–744.

6. I. Matai [et al.]. Progress in 3D bioprinting technology for tissue/organ regenerative engineering // Biomaterials. 2020. Vol. 226. P. 119536.

7. L.S. Moreira Teixeira [et al.]. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering // Biomaterials. 2012. Vol. 33. №5. P. 1281–1290.

8. А.А. Денисов, А. В. Богданова, Т. А. Кулагова, Т. Е. Кузнецова, Д. П. Токальчик, С. Г. Пашкевич. Диффузия графеновых квантовых точек в срезы гиппокампа крысы in vitro // Новости медико-биологических наук. 2022. Т. 25. №4. Стр. 14–18.

9. F.M. Kievit [et al.]. Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment // Biomaterials. 2010. Vol. 31. №22. P. 5903–5910.

10. M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo-de Santiago. Advances in 3D bioprinting for the biofabrication of tumor models // Bioprinting. 2021. Vol. 21. Стр. e00120.

11. R. Augustine [et al.]. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy // Translational Oncology. 2021. Vol. 14. №4. P. 101015.

12. C. Tomasina [et al.]. Bioprinting Vasculature: Materials, Cells and Emergent Techniques // Materials (Basel). 2019. Vol. 12. №17. P. 2701.

13. C. Corrò, L. Novellasdemunt, V.S.W. Li. A brief history of organoids // American Journal of Physiology-Cell Physiology. 2020. Vol. 319. №1. P. С151–С165.

14. Denisov A.A. et al. Patterns of Electrical Activity Generated by Biological Neural Network in vitro // Open semantic technologies for intelligent systems. 2018. P. 265–268.

15. U.S. Bhalla, R. Iyengar. Emergent Properties of Networks of Biological Signaling Pathways // Science. 1999. Vol. 283. №5400. P. 381–387.

16. M. Thiebaut De Schotten, S. J. Forkel. The emergent properties of the connected brain // Science. 2022. Vol. 378. №6619. P. 505–510.

17. C. He [et al.]. Organoid bioprinting strategy and application in biomedicine: A review // IJB. 2023. Vol. 9. №6. P. 0112.

18. J. Chakraborty, S. Chawla, S. Ghosh. Developmental biology- inspired tissue engineering by combining organoids and 3D bioprinting // Current Opinion in Biotechnology. 2022. Vol. 78. P. 102832.

19. S.P. Paşca. Assembling human brain organoids // Science. 2019. Vol. 363. №6423. P. 126–127.


Review

For citations:


Denisov A., Pashkevich S. Three-dimensional cell cultivation and bioprinting. Science and Innovations. 2023;(11):27-31. (In Russ.) https://doi.org/10.29235/1818-9857-2023-11-27-31

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)