Preview

Science and Innovations

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantum technologies based on nitrogen-vacancy color centers in diamond

Abstract

There is given a brief review of the results of the NV centers in diamond and their complexes with 13C nuclear spins characteristics computer simulation. The data obtained are used to implement various quantum technologies based on them.

About the Authors

A. Nizovtsev
Институт физики им. Б. А. Степанова НАН Беларуси
Belarus

Alexander Nizovtsev



A. Pushkarchuk
Институт физико-органичекой химии НАН Беларуси
Belarus

Alexander Pushkarchuk



D. Filimonenko
Институт физики им. Б. А. Степанова НАН Беларуси
Belarus

Dmitry Filimonenko



S. Kilin
Институт физики им. Б. А. Степанова НАН Беларуси
Belarus

Sergey Kilin



References

1. С.Я. Килин. Впереди времени и технологий // Наука и инновации.2023. №8. С. 10–17. 2. M. W. Doherty. The nitrogen-vacancy color centre in diamond / M. W. Doherty [etal.] // Physics Reports. 2013. Vol. 528. P. 1.

2. J. Wrachtrup. Quantum computation using the 13C nuclear spins nearby the single NV defect center in diamond / J. Wrachtrup, S. Ya. Kilin, A. P. Nizovtsev // Оптика и Спектроскопия. 2001. Т. 91. №3. С. 460–467.

3. S. Pezzagna. Quantum computer based on color centers in diamond / S. Pezzagna, J. Meijer // Applied Physics Reviews. 2021. Vol. 8 (1). P. 011308.

4. M.H. Abobeih. Atomic-scale imaging of a 27‑nuclear-spin cluster using a single-spin quantum sensor / M. H. Abobeih [et al.] // Nature. 2019. Vol.576. P. 411.

5. R. Schirhagl. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology / R. Schirhagl [et al.] // Annu. Rev. Phys. Chem. 2014. Vol. 65. P. 83–105.

6. Y. Wu. Diamond Quantum Devices in Biology/ Y. Wu. F. Jelezko, M. B. Plenio, T. Weil // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 6586–6598.

7. A.P. Nizovtsev. Non-flipping 13C spins near NV center in diamond: Hyperfine and Spatial Characteristics by Density Functional Theory Simulation of the C510[NV]H252 Cluster / A.P. Nizovtsev [et al.] // New J. Phys. 2018. Vol. 20. P. 023022.

8. А.П. Низовцев, С. Я. Килин. Микроволны для эффективного манипулирования ядерными спинами в системах NV‑13C в алмазе / А. П. Низовцев, С. Я. Килин // Известия РАН, серия физическая. 2020. Т. 84. №3. С. 310–316.

9. M. Alkahtani. Growth of high-purity low-strain fluorescent nanodiamonds / М. Alkahtani [et al.] // ACS Photonics. 2019. Vol. 6. P. 1266.

10. A.P. Nizovtsev. Hyperfine Characteristics of Quantum Registers NV‑13С in Diamond Nanocrystals Formed by Seeding Approach from Isotopic Aza-Adamantane and Methyl-Aza-Adamanthane / A. P. Nizovtsev [et al.] // Semiconductors. 2020. Vol. 54. №12. P. 1689–1691.

11. A.P. Nizovtsev. Hyperfine interactions in the NV‑13C quantum registers in diamond grown from the azaadamantane seed / A. P. Nizovtsev [et al.] // Nanomaterials. 2021. Vol. 11. P. 1303.

12. M.H. Abobeih. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment / M. H. Abobeih [et al.] // Nat. Commun. 2018. Vol. 9. P. 2552.

13. H.P. Bartling. Entanglement of Spin-PairQubits with Intrinsic Dephasing Times Exceeding a Minute /H. P. Bartling [et al.] // Phys. Rev. X. 2022.Vol. 12. P. 011048.

14. S. Schmitt. Submillihertz Magnetic Spectroscopy Performed with a Nanoscale Quantum Sensor / S. Schmitt [et al.] // Science. 2017. Vol. 356. Р. 832–837.

15. A. Nizovtsev. Simulation of Indirect 13C‑13C J-Coupling Tensors in Diamond Clusters Hosting the NV Center. A. Nizovtsev [et al.] // Mater. Proc. 2022. Vol. 9. P. 4.

16. А.П. Низовцев. Квантовая память на димерах13С‑13С в алмазе с NV-центрами: моделирование методами квантовой химии / А.П. Низовцев [и др.] // ЖПС. 2023. Т. 90. №5.

17. Q. Chen. Steady-state preparation of long-lived nuclear spin singlet pairs at room temperature / Q. Chen, I. Schwarz, M. B. Plenio // Phys. Rev. B. 2017. Vol. 95. P. 224105.

18. А.П. Низовцев. Векторная магнитометрия с помощью одиночного комплекса NV-13C в алмазе / А.П. Низовцев [и др.] // ЖПС. 2022. Т. 89. №6. С. 807–814.

19. E. Bauch. Sensitivity optimization for NV-diamond magnetometry / E.Bauch [et al.] // Rev. Mod. Phys. 2020. Vol. 92, P. 015004.

20. S.M. Blakley. Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond / S. M. Blakley [et al.] // Optics Letters. 2016. Vol. 41. P. 2057–2060.

21. D.S. Filimonenko. Weak magnetic field resonance effects in diamond with nitrogen-vacancy centers / D. S. Filimonenko [et al.] // Semiconductors. 2018. Vol. 52, №14. P. 1865–1867.

22. D.S. Filimonenko. Weak magnetic field effects on the photoluminescence ofan ensemble of NV centers in diamond: experiment and modelling / D.S. Filimonenko [et al.] // Semiconductors. 2020. Vol. 54. P. 1730–1733.

23. Д.С. Филимоненко. Проявления в ИК-люминесценции процессов кросс-релаксации NV-центров в слабых магнитных полях / Д. С. Филимоненко [и др.] // ЖПС. 2021. Т. 88. №6. С. 858–871.


Review

For citations:


Nizovtsev A., Pushkarchuk A., Filimonenko D., Kilin S. Quantum technologies based on nitrogen-vacancy color centers in diamond. Science and Innovations. 2023;(8):46-51. (In Russ.)

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-9857 (Print)
ISSN 2412-9372 (Online)