Artificial intelligence technologies in monitoring pathomorphological changes in the central nervous system in multiple sclerosis
https://doi.org/10.29235/1818-9857-2023-02-75-83
Abstract
The paper presents one of the options for automating the evaluation procedures of magnetic resonance imaging (MRI) of the brain in patients suffering from one of the most severe diseases of the central nervous system (CNS), multiple sclerosis.
About the Authors
A. FedulovBelarus
Alexander Fedulov
G. Karapetyan
Belarus
Grigory Karapetyan
I. Kosik
Belarus
Ivan Kosik
A. Borisov
Belarus
Alexei Borisov
K. Blagochinnaya
Belarus
Ksenia Blagochinnaya
N. Volkova
Belarus
Natalia Volkova
References
1. McGinley M.P., Goldschmidt C.H., Rae-Grant A.D. Diagnosis and Treatment of Multiple Sclerosis. A Review. – JAMA. 2021. №325(8). Р. 765–779.
2. Wattjes M.P., Ciccarelli O, Reich D.S., Banwell B., de Stefano N., [et al] / Lancet Neurology 2021. №20(8). Р. 653–670.
3. Thompson A.J., Banwell B.L., Barkhof F., [et al] Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria / Lancet Neurol. 2018. №17(5). Р. 162–73.
4. Rae-Grant A., Day G.S., Marrie R.A., [et al]. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. / Neurology. 2018. №17(6). Р. 777–788.
5. Wiendl H., Gold R., Berger T., Derfuss T., [et al] . Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper) / Ther Adv Neurol Disord. 2021. №14(2). Р. 1–39.
6. Thakur S.P., Schindler M.K., Bilello M, Bakas S. Clinically Deployed Computational Assessment of Multiple Sclerosis Lesions / Front Med (Lausanne). 2022. №17(1). Р. 1–11.
7. Carass A., Roy S., Jog A., Cuzzocreo J.L., [et al]. Longitudinal multiple sclerosis lesion volume change over time: development of an algorithm foe analysis of longitudinal quantitative MRI measures. – Neuroimage. 2017. №148(1). Р. 77–102.
8. Косик И. И., Карапетян Г. М., Федулов А. С., Андреева М. А., Цвирко В. Н. Свидетельство регистрации в Национальном центре интеллектуальной собственности компьютерной программы «Brain Snitch» №1368; 16.12.2022.
9. Андреева М. А., Карапетян Г. М., Косик И. И., Федулов А. С., Борисов А. В. Алгоритм визуализации и анализа патоморфологических изменений в головном мозге – Инструкция по применению – Регистрационный №042–0520. Утверждена 11.06.2020.
10. Huimin H., Lin L., Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen YW, Wu J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. – Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020:1055–1059.
11. Buslaev A., Iglovikov V., Khvedchenya E., Parinov A., Druzhinin M., Kalinin A. Albumentations: Fast and Flexible Image Augmentations. / Information. 2020. №11(1). Р. 27–35.
Review
For citations:
Fedulov A., Karapetyan G., Kosik I., Borisov A., Blagochinnaya K., Volkova N. Artificial intelligence technologies in monitoring pathomorphological changes in the central nervous system in multiple sclerosis. Science and Innovations. 2023;(2):75-83. (In Russ.) https://doi.org/10.29235/1818-9857-2023-02-75-83