УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ для дезинфекции сточных вод

Вадим Китиков,

директор Института жилищнокоммунального хозяйства НАН Беларуси, доктор технических наук, профессор

Виталий Бойцов,

директор 000 «ГеоЦентрГрупп»

Иван Барановский,

заместитель директора Института ЖКХ НАН Беларуси по научной работе, кандидат технических наук

Антон Чухольский,

научный сотрудник Института жилищно-коммунального хозяйства НАН Беларуси

Сточные воды представляют собой загрязненные водные массы, образующиеся в результате антропогенной деятельности, а также атмосферных осадков, и содержащие минеральные, органические и биологические примеси. Существующие методы механической, биологической и физико-химической очистки не способны полностью обеспечить эпидемическую безопасность таких вод. Даже после прохождения всех этапов фильтрации в них могут оставаться возбудители кишечных заболеваний различной природы (бактерии, вирусы и простейшие микроорганизмы).

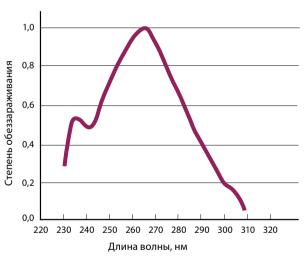
Согласно информации ЮНИСЕФ и ВОЗ, миллиарды людей во всем мире все еще страдают от отсутствия доступа к водоснабжению, санитарии и гигиене и, как следствие, от инфекционных заболеваний, вызванных загрязнением водоемов фекальнобытовыми отходами [1]. Последние исследования ООН (март 2024 г.) конкретизируют масштабы этих ограничений, констатируя, что 2,2 млрд человек без возможности пользоваться чистой водой – фактор многочисленных потенциальных угроз, начиная от эпидемий и заканчивая вопросами глобальной безопасности [2].

Таким образом, эффективная дезинфекция сточных вод жизненно необходима.

По данным Министерства здравоохранения Республики Беларусь, удельный вес нестандартных проб воды по микробиологическим показателям безопасности в нецентрализованных источниках питьевого водоснабжения составил в 2023 г. 8,7% (в 2019 г. – 20,2%). Удельный вес нестандартных проб воды коммунальных водопроводов составил 0,4% (в 2022 г. – 0,6%), ведомственных – 0,7% (в 2022 г. – 0,9%) [3].

Проблема состояния поверхностных и подземных вод актуальна и для других стран [4]. Так, в Российской Федерации результаты мониторинга свидетельствуют о существенном загрязнении водоемов. Еще в 2021 г. количество нестандартных проб в отдельных регионах было высоким, и оно практически не изменялось в последние годы [5].

В мировой практике водоотведения широко применяются два основных метода обеззараживания очищенных сточных вод. Традиционным способом считается хлорирование воды (использование гипохлорита натрия). Выраженное бактерицидное действие обусловлено способностью хлора и его соединений проникать через клеточную мембрану бактерий, а механизм этого окислительного процесса связан с повреждением клеточной оболочки, подавлением ферментной системы бактерий, разрушением нуклеиновых кислот [6].


Исследования показывают, что количество бактерий, погибающих под воздействием хлора, растет в геометрической прогрессии с увеличением дозы вещества. Однако эффективность обеззараживания воды зависит не только от количества окислителя, но и от продолжительности контакта с ним, а также от физико-химических характеристик этой жидкости [6].

Применение хлора в качестве дезинфицирующего средства для сточных вод сопряжено с рядом недостатков, которые снижают его эффективность и могут представлять потенциальную опасность. Рассмотрим основные из них.

Резистентность биопримесей. Хлор является эффективным средством для уничтожения бактерий в воде, однако в применяемых дозах малоэффективен в отношении вирусов и простейших микроорганизмов, что влечет за собой эпидемические риски.

Образование токсичных соединений. Значительная часть дозированного хлор-реагента уходит не на обеззараживание, а на формирование летучих галогенорганических соединений (ЛГС) и хлораминов. Реакция наступает сразу после начала хлорирования сточной воды, в результате чего в ней обнаруживается более 20 различных известных ЛГС. Чаще всего встречаются хлороформ и четыреххлористый углерод, причем количество хлороформа обычно на 1-3 порядка превышает содержание других летучих хлорорганических соединений. Обладая токсичными свойствами, они могут оказывать негативное воздействие на биоценоз водоемов – приемников сточных вод, так как даже в незначительных концентрациях способны стать причиной серьезных нарушений в функционировании водных организмов [7].

В то же время вызывают дополнительные опасения хлорамины, образующиеся во время хлорирования, ввиду их длительной стойкости и ядовитости. Не случайно в законодательстве Российской Федерации (а также, к примеру, в ряде штатов США) закреплены требования по обязательному внедрению технологии дехлорирования хлорированных сточных вод [8]. В России данные нормы содержатся в Методических указаниях 2.1.5.800-99 «Водоотведение населенных мест, санитарная охрана водоемов. Организация госсанэпиднадзора за обеззараживанием сточных вод» [6], в Информационно-техническом справочнике по наилучшим доступным технологиям очистки сточных вод с использованием централизованных систем водоотведения городских поселений [9] и Строительных правилах по проектированию наружных сетей и сооружений канализации [10]. Стоит отметить, что реализация технологии дехлорирования с точки зрения капитальных затрат требует строительства дополнительных контактных емкостей и расширения реагентного хозяйства для хранения необходимого запаса реагента. И это также может быть затруднительно в пределах существующей площадки сооружений. Таким образом, с точки зрения эксплуатационных расходов требуется закупка реагента и дополнительное потребление электроэнергии.

Puc. 1. Степень воздействия (в отн. ед.) УФ-излучения на живые организмы

Хранение и транспортировка хлора сопряжены с существенными затратами на обеспечение безопасности из-за высокой токсичности вещества. Аварии на складах, где хранятся его большие объемы, могут иметь катастрофические последствия для населения и окружающей среды.

В силу упомянутых выше обстоятельств был найден альтернативный вариант – ультрафиолетовое (УФ) облучение, являющееся сегодня одним из самых эффективных и перспективных способов очистки жидких коммунальных отходов.

УФ-излучение представляет собой электромагнитные волны, длина которых лежит в диапазоне от 100 до 400 нм. Для процессов обеззараживания наиболее эффективно использовать лучи с длиной волны 260–265 нм (рис. 1) [11, 12].

Биоцидное действие ультрафиолета проявляется на уровне молекул нуклеиновых кислот (ДНК и РНК), способствуя образованию двойных связей между отдельными нуклеотидами. Это приводит к инактивации – блокированию воспроизведения генетического материала, остановке клеточного деления [12]. Часть микроорганизмов, даже оставаясь жизнеспособными, могут потерять возможность размножаться и, как следствие, вызывать заболевание.

Основные источники УФ-излучения, применяемые в технологии УФ-дезинфекции, – газоразрядные лампы, заполненные смесью паров ртути и инертных газов. Для сточных вод, как правило, применяются амальгамные лампы низкого давления, которые излучают на длине волны 253,7 нм.

Ключевым параметром УФ-обеззараживания является УФ-доза, которая зависит от интенсивности УФ-облучения и его протяженности по времени. Интенсивность, в свою очередь, обусловливается мощностью источника излучения и коэффициентом УФ-пропускания, а время облучения – геометрией УФ-оборудования и объемом очищаемой воды. Коэффициент УФ-пропускания характеризует степень поглощения ультрафиолетового излучения в жидкости и определяет его долю, пропускаемую ее слоем толщиной в 1 см.

Известно, что УФ-излучение поглощается главным образом растворенными в воде органическими веществами. Поэтому его интенсивность падает по мере проникновения вглубь. Характерные значения коэффициента пропускания – 40–70% для очищенных сточных вод и 50–80% – для доочищенных.

На эффективность УФ-обеззараживания оказывают влияние взвешенные вещества, всегда присутствующие в сточной воде, и при их повышенной концентрации возрастает эффект «экранирования» микробиологических загрязнителей, что приводит к снижению результата и требует увеличения дозы УФ-облучения. Однако при их содержании в сточных водах до 30–35 мг/л существенного снижения степени очистки не происходит. Основная задача

при таком способе дезинфекции стоков – обеспечение достаточной дозы УФ-излучения, которая в Республике Беларусь и Российской Федерации установлена на уровне 30 мДж/см² [13–15].

В нашей стране также уделяется повышенное внимание санитарным нормам, касающимся водоотведения. Эти вопросы регулируются Санитарными правилами и нормами 2.1.2.12-33-2005 «Гигиенические требования к охране поверхностных вод от загрязнения», утвержденными постановлением Главного государственного санитарного врача Республики Беларусь от 28.11.2005 г. №198 [16]. Разработана Инструкция 2.1.5.11-10-7-2004 «Санитарный надзор за обеззараживанием сточных вод ультрафиолетовым излучением», утвержденная постановлением Главного государственного санитарного врача Республики Беларусь от 18.03.2004 г. №37 [15]. Ведутся работы по совершенствованию нормативной базы с учетом обновленных данных, касающихся современных методов обеззараживания, получивших широкое признание и практическое применение в мире.

Для санитарной обработки сточных вод используются УФ-системы как на базе корпусных установок, которые применяются главным образом в напорных линиях, так и модульные самотечные устройства, устанавливаемые в лотках (каналах). УФ-лампы в таких системах надежно изолированы от воды с помощью защитных кварцевых чехлов, которые свободно пропускают бактерицидное УФ-излучение. Эти системы обеспечивают успешную дезинфекцию воды независимо от ее температуры.

К основным достоинствам применения ультрафиолетового излучения для обеззараживания сточных вод следует отнести ряд характеристик.

- Эффективность: УФ-облучение способно инактивировать широкий спектр микроорганизмов, включая бактерии и их споры, вирусы и простейшие, что делает его более надежным методом обеззараживания, чем хлорирование, которое результативно только в отношении бактериального загрязнения.
- Быстродействие: продолжительность УФ-обработки при прохождении сточных вод через ламповую зону составляет несколько секунд, в то время как рекомендуемое время контакта сточных вод с хлорреагентами не менее получаса.
- Универсальность: процесс дезинфекции ультрафиолетом осуществляется благодаря фотохимическим реакциям внутри микроорганизмов и не зависит от таких характеристик воды, как рН и температура.

ИНФОЛИНИЯ

- Экологичность и гигиеничность: после воздействия УФ-излучения в воде не образуются вредные органические соединения, что благоприятно для биоценоза водоемов, а также значительно упрощает контроль за процессом обеззараживания и избавляет от необходимости проведения анализов на остаточную концентрацию дезинфектанта.
- **Безопасность:** метод не представляет опасности для здоровья людей и не требует хранения токсичных реагентов, что значительно повышает надежность систем водоснабжения и канализации.
- **Компактность:** в ряде случаев УФ-оборудование возможно размещать в существующих помещениях без необходимости капитального строительства.
- Простота в эксплуатации: для поддержания эффективности системы требуется лишь периодическая очистка кварцевых чехлов и замена ламп по мере их выработки.
- Современность: использование новейших УФ-ламп и пускорегулирующей аппаратуры обеспечивает высокую надежность и позволяет легко автоматизировать процесс обеззараживания.
- Экономичность: расходы на эксплуатацию систем УФ-обеззараживания ниже, чем при хлорировании, благодаря в ряде случаев меньшему потреблению электроэнергии и отсутствию необходимости в дорогостоящих реагентах и системах контроля.

Метод оптимален как с технической, так и с экономической [17] точки зрения, что делает его широко распространенным в мировой практике. Сегодня во всем мире десятки тысяч станций очистки сточных вод используют ультрафиолетовые системы для обеззараживания отводимых стоков. В начале 2000-х на очистных сооружениях канализации (ОСК) «Сатр Creek» г. Атланта (США) был запущен блок ультрафиолетового обеззараживания, способный обрабатывать 340 тыс. м³ стоков в сутки [18]. В 2007 г. в России на Люберецких очистных сооружениях был введен в эксплуатацию УФ-комплекс с производительностью до 1,35 млн м³/сут. Затем в 2011 г. на Правобережных очистных сооружениях Красноярска заработала ультрафиолетовая станция (360 тыс. м³/сут), а еще год спустя Курьяновские ОС АО «Мосводоканал» открыли крупнейшую в мире подобную систему $(3 \text{ млн } \text{м}^3/\text{сут}) (puc. 2).$

В 2016 г. в Пекине была запущена УФ-станция на самых масштабных в Азии подземных очистных

сооружениях Huai Fang (*puc. 3*). Ее производительность составляет 600 тыс. м³/сут.

В Беларуси наиболее мощный объект такого рода (54 тыс. м³/сут) с 2003 г. эксплуатируется на биологических очистных сооружениях (БОС) Мозырского нефтеперерабатывающего завода (рис. 4). УФ-станция обеззараживает как сточные воды НПЗ, так и муниципальные стоки г. Мозыря, отводимые в р. Припять.

В Брестской области в эксплуатации находятся лотковые УФ-станции на очистных сооружениях городов Столин (производительностью 5,6 тыс. м³/сут) и Ляховичи (3,2 тыс. м³/сут). Соору-

жения расположены в отдельно стоящих зданиях, куда и поступают сточные воды, прошедшие биологическую очистку, из вторичных отстойников. После обеззараживания они отводятся в водный объект. Оборудование станций работает в автоматическом режиме, а его техническое обслуживание не требует специальных знаний и навыков. В обязанности персонала очистных сооружений входит только редкий визуальный осмотр техники, промывка модулей и замена УФ-ламп по истечении их ресурса. УФ-установки обеспечивают надежную дезинфекцию сточных вод до требований государственных нормативов, что подтверждается лабораторным контролем.

На многих станциях водоотведения нашей страны запроектировано применение ультрафиолетовых ламп. Ряд объектов находится на стадии монтажных и пусконаладочных работ. Дальнейшее внедрение станций УФ-обеззараживания сточных вод повысит уровень экологической безопасности водоемов благодаря отказу от хлорирования.

Метод ультрафиолетового обеззараживания сточных вод, основанный на использовании современных УФ-систем с высокомошными амальгамными лампами низкого давления, является одним из самых эффективных и экономически выгодных решений, применяемых в мировой практике для дезинфекции жидких отходов. Описанная выше технология представляет собой мощный инструмент, способный обеспечивать эффективную дезинфекцию в отношении всех видов патогенных микроорганизмов, включая устойчивых к воздействию хлора. Отличительная черта этого метода - отсутствие побочных продуктов очистки, способных негативно повлиять на живые организмы и здоровье человека, что делает его экологически чистым и безопасным для окружающей среды.

УФ-облучение используют все более широко десятки тысяч станций очистки по всему миру. В промышленно развитых странах Европы, Америки и Азии, развивающихся странах Ближнего Востока, Северной Африки, Латинской Америки и Юго-Восточной Азии более 95% канализационных сооружений проектируются с применением УФ-технологии.

В экологических программах, реализуемых в Республике Беларусь, уделяется особое внимание переходу на экологически безопасные технологии. Одной из них и является УФ-обеззараживание сточных вод. На ряде сооружений с этой целью уже задействуется УФ-оборудование, многие объекты находятся на стадии монтажа и пусконаладочных

работ. Функционирование этих станций позволит повысить экологическую безопасность водоемов в результате отказа от хлорирования и, в свою очередь, благотворно повлияет на биоценоз и снизит риски для здоровья населения, которое пользуется водными ресурсами региона.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- ЮНИСЕФ, ВОЗ: каждый третий житель планеты не имеет доступа к безопасной питьевой воде // https://www.who.int/ru/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-%E2%80%93unicef-who.
- Доклад ООН: водный кризис угроза безопасности во всем мире // https://news.un.org/ru/story/2024/03/1450821.
- Результаты наблюдений НСМОС, 2023 г. 14 СОЦИАЛЬНО-ГИГИЕНИЧЕСКИЙ МОНИ-ТОРИНГ // https://www.nsmos.by/sites/default/iles/2024—06/14-socialnogigienicheskiy-monitoring.pdf.
- 4. Т.И. Есполов, Ж.М. Адилов [и др.]. Улучшение качества природных вод и очистка сточных вод. — Алматы, 2013.
- Трухина Г.М., Ярославцева М.А., Дмитриева Н.А. Современные тенденции санитарной микробиологии в реализации санитарно-эпидемиологического надзора за безопасностью водных объектов // Здоровье населения и среда обитания (ЗНиСО). 2022. Т. 30. №10. С. 16—24.
- МУ 2.1.5.800—99 «Водоотведение населенных мест, санитарная охрана водоемов. Организация госсанэпиднадзора за обеззараживанием сточных вод».— М., 1999.
- Голуб Н.М. Влияние веществ-загрязнителей, содержащихся в сточных водах, на жизнедеятельность активного ила / Брестский государственный университет имени А.С. Пушкина / Экологический вестник, 2017, №1 (39) // https://elib.bsu.by/ bitstream/123456789/177171/1/ilovepdf_com-20—25.pdf.
- 8. Wastewater technology fact sheet Clorine Disinfection USA Environment Protection Agency EPA 832-F99–062 // http://www.epa.gov/npdes/pubs/chlo.pdf.
- 9. ИТС 10—2019 Очистка сточных вод с использованием централизованных систем водоотведения поселений, городских округов // https://docs.cntd.ru/document/564068889.
- 10. СП 32.13330.2018 Канализация. Наружные сети и сооружения // https://docs.cntd.ru/document/554820821.
- United States Environmental Protection Agency Ultraviolet Disinfection Guidance Manual For The Final Long Term 2 Enhanced Surface Treatment Rule. Office of Water (4601) EPA815-R-06-007 November 2006 // http://www.epa.gov/npdes/pubs/chlo.pdf.
- Ультрафиолетовые технологии в современном мире: коллективная монография / Ф.В. Кармазинов, С.В. Костюченко, Н.Н. Кудрявцев, С.В. Храменков (ред.). Долгопрудный, 2012.
- 13. МУК 4.3.2030—05 «Санитарно-вирусологический контроль эффективности обеззараживания питьевых и сточных вод УФ-облучением». М., 2006.
- 14. МУ 2.1.5.732—99 «Санитарно-эпидемиологический надзор за обеззараживанием сточных вод ультрафиолетовым излучением». М., 1999.
- 15. Инструкция 2.1.5.11—10—7—2004 «Санитарный надзор за обеззараживанием сточных вод ультрафиолетовым излучением», утв. пост. Главного государственного санитарного врача Республики Беларусь от 18.03.2004 №37.
- 16. Санитарные правила и нормы 2.1.2.12—33—2005 «Гигиенические требования к охране поверхностных вод от загрязнения», утв. пост. Главного государственного анитарного врача Республики Беларусь от 28.11.2005 №198 // https://iso14000.by/library/low/water/158.
- 17. Ткачев А.А., Баранов В.Л., Пискарева В.М. Сравнительная оценка эксплуатационных затрат на обеззараживание сточных вод при применении хлорирования // Водоснабжение и санитарная техника. 2018. №3. С. 31—35. https://www.vstnews.ru/ru/archives-all/2018/2018—03/7191-sravnitelnaya.
- Курганов А.М., Алексеев М.И., Иванов В.Г. Технический справочник по обработке воды в 2 т. Т 2: пер. с фр. – СПБ., 2007.