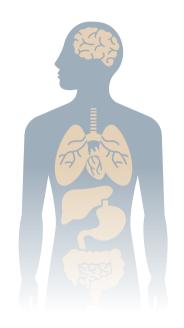
РАЗВИТИЕ ОСТРОГО ЭКСПЕРИМЕНТАЛЬНОГО ПЕРИТОНИТА ПРИ ВВЕДЕНИИ L-АРГИНИНА

УДК 616.381-002-099:611.018.3:611.13[.14.018.74:577.121.7]-092.9

Эрна Гусаковская, ассистент кафедры патологической физиологии имени Д.А. Маслакова Гродненского государственного медицинского университета; hirurq8700@mail.ru



Наталия Максимович, завкафедрой патологической физиологии Д.А. Маслакова Гродненского государственного медицинского университета, доктор медицинских наук, профессор; mne@grsmu.by

Аннотация. Представлены результаты эксперимента по изучению развития острого экспериментального перитонита у крыс с введением субстрата NO-синтазы — L-аргинина, учитывая сведения о его роли в патогенезе этого состояния. Продемонстрировано, что данный прием уменьшает выраженность интоксикационного синдрома, реакцию лейкоцитов крови и брюшной полости, изменение уровня нитритов/нитратов, снижает активность окислительного стресса, эндотелиальной дисфункции и степень повреждения брюшины, что важно, учитывая высокую летальность при перитоните.

Ключевые слова: экспериментальный перитонит, интоксикационный синдром, лейкоциты, эндотелий, брюшина, окислительный стресс, *L-аргинин*.

Для цитирования: Гусаковская Э., Максимович Н. Развитие острого экспериментального перитонита при введении L-аргинина // Наука и инновации. 2022. №2. С. 78–83. https://doi.org/10.29235/1818-9857-2022-2-78-83

аспространенный перитонит остается нерешенной проблемой ургентной хирургии, что связано с высокой летальностью, достигающей 85-90% при развитии полиорганной недостаточности и септического шока [1], и может быть обусловлено неполноценностью патогенетической терапии. Имеются литературные данные об участии в патогенезе воспаления ряда биологически активных молекул, среди которых монооксид азота (NO), образуемый из L-аргинина при участии различных изоформ NO-синтазы (NOS): эндотелиальной, индуцируемой и нейрональной. Неоднозначность про- и антиоксидантных, про- и антивоспалительных, про- и антиагрегационных, про- и антиадгезивных эффектов NO [2] и неизученность влияния

субстрата NOS – L-аргинина (L-Arg) на развитие воспалительного процесса в брюшной полости обусловливают необходимость проведения исследований в данном направлении.

Целью нашей работы было изучение течения острого экспериментального перитонита (ЭП) у крыс с введением субстрата NO-синтазы – L-аргинина.

Материалы и методы

Эксперименты выполнены на белых беспородных крысахсамцах, 230-250 г (n=111), в соответствии с Хельсинкской Декларацией о гуманном обращении с животными. Крысы разделены на 3 равные группы, которым внутрибрюшинно, в объеме 0,6 мл/100 г массы тела, вводили: 1-й группе (контроль) -0,9%-ный хлорид натрия, 2-й (экспериментальный перитонит) – 15%-ную каловую взвесь, по методике Лазаренко В.А. с соавторами, в модификации [3], 3-й (ЭП+L-Arg) – 15%ную каловую взвесь с последующим внутримышечным введением L-аргинина, 300 мг/кг («Sigma», США). Исследования

в каждой группе проводили спустя полсуток (n=6), 1 сутки (n=6) и 3 суток (n=6), оценивали летальность животных (n=19). Изучение двигательной активности и мышечной силы крыс производили в тестах «открытое поле» и «мышечная сила» соответственно. Частоту дыхания определяли путем подсчета числа экскурсий грудной клетки, ректальную температуру измеряли электронным термометром (Omron ETS). Изучение качественного и количественного состава лейкоцитов осуществляли в камере Горяева и в мазках крови и перитонеальной жидкости, с окраской азур-эозином. Способность перитонеальных нейтрофилов к фагоцитозу определяли на основании содержания формазан-позитивных нейтрофилов, используя адаптированную методику Пацула Ю.И., Власенко В.С. [4]. Изучение повреждения эндотелия кровеносных сосудов осуществляли путем подсчета в камере Горяева числа циркулирующих эндотелиальных клеток. Содержание метаболитов NO - нитритов/нитратов (NO_x), продукта

липопероксидации - малонового диальдегида (MDA) и антиоксиланта – восстановленного глутатиона (GSH) определяли в плазме крови и перитонеальной жидкости [5, 6]. Морфологические изменения брюшины оценивали в микропрепаратах подвздошной кишки и брюшной стенки, окрашенных гематоксилином и эозином, применяя шкалу полуколичественной оценки структурных нарушений (от + до ++++). Статистическую обработку данных проводили с помощью программы Statistica 10.0 для Windows (StatSoft Inc., США), используя непараметрический критерий Краскелла-Уоллиса и апостериорные сравнения по критерию Данна; данные представлены - Me (LO; UO), где Me – медиана, LQ и UQ – значения нижнего и верхнего квартилей соответственно.

Результаты и обсуждение

Проявления интоксикационного синдрома при ЭП с введением субстрата NOS – L-аргинина были выражены в меньшей

Группы крыс, сроки ЭП		ДП, дм	ВУР, с	ЧД/мин	PT, oC
Контроль		29,7 (27,0; 33,3)	120 (109; 130)	94 (88; 96)	37,2 (36,8; 37,4)
	0,5 сут.	9,2 (7,5; 11,3)***	27 (20; 30)***	141 (137; 146)**	39,8 (39,5; 40,1)**
эп	1 сут.	5,9 (5,5; 7,2)*** ^Ψ	16 (13; 19)*** ^Ψ	149 (144; 152)** ^Ψ	40,5 (40,1; 40,9)** ^Ψ
	3 сут.	7,8 (6,4; 8,8)***	20 (17; 24)***	129 (124; 133)** ^Ψ	38,8 (38,5;39,1)** ^{ΨΔ}
ЭП+ L-Arg	0,5 сут.	13,2 (10,1; 16,0)**	31 (29; 34)**	131 (128; 133)**#	39,0 (38,7; 39,2)***
	1 сут.	9,0 (8,0; 10,3)**#	25 (22; 26)** ^{#Ψ}	139 (136; 141)*** [#]	39,6 (39,4; 39,8)**** ^Ψ
	3 сут.	15,3 (13,4; 16,3)*** ^{##}	33 (30; 36)**##Δ	118 (116;120)** ^{##ΨΔ}	38,1 (37,9; 38,3)**# ^{ΨΔ}

Таблица 1. Проявления синдрома интоксикации у крыс с экспериментальным перитонитом и введением L-аргинина, Me (LQ; UQ) Примечание: ДП — длина пройденного пути в тесте «открытое поле»; ВУР — время удержания на решетке в тесте «мышечная сила»; ЧД — частота дыхания; РТ — ректальная температура; сут. — сутки; значимые различия относительно: * — p < 0.05, ** — p < 0.01, *** — p < 0.01 — группы «контроль»; # — p < 0.05, ## — p < 0.01 — группы 9П; 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 — 9 < 0.05 —

ДИССЕРТАЦИОННЫЕ ИССЛЕДОВАНИЯ

степени, чем при ЭП без его введения. Так, наблюдалось увеличение двигательной активности и мышечной силы (табл. 1), что может быть обусловлено уменьшением активности воспалительного процесса и проявлений синдрома интоксикации, а также положительным влиянием L-аргинина на функцию креатина, участвующего в энергетическом обмене в мышечной ткани [7].

Изучение общего содержания лейкоцитов у крыс с ЭП и введением L-аргинина не выявило изменений в крови во все изучаемые сроки и в перитонеальной жидкости спустя полсуток и 1 сутки, при уменьшении количества перитонеальных лейкоцитов спустя 3 суток в 1,2 раза (табл. 2, 3), по сравнению с результатами у крыс

с перитонитом без его введения, что может свидетельствовать об «угасании» воспаления. Кроме того, в крови и перитонеальной жидкости крыс 3-й группы отмечено уменьшение абсолютного содержания нейтрофилов и ядерного сдвига лейкоформулы влево (табл. 2-4), о чем свидетельствовало уменьшение во все изучаемые сроки количества метамиелоцитов, а спустя 1 сутки и 3 суток - палочкоядерных нейтрофилов и миелоцитов, причем в последнем случае сократилось и содержание сегментоядерных гранулоцитов, что указывает на меньшую активность воспалительного процесса.

Помимо этого, у крыс с ЭП и введением L-аргинина отмечено повышение способности перитонеальных нейтрофи-

лов к фагоцитозу, о чем свидетельствовало увеличение количества формазан-позитивных нейтрофилов в перитонеальной жидкости спустя полсуток до 51 (49; 53) или на 7%, спустя 1 сутки – до 44 (42; 46) или на 9%, спустя 3 суток – до 50 (48; 53) или на 6%, что может быть обусловлено реализацией антигипоксического эффекта аминокислоты через активацию эндотелиальной NOS и стимуляцией образования креатина, способствующих улучшению метаболизма в иммунокомпетентных клетках [2, 7].

Изучение содержания базофилов/тучных клеток и эозинофилов у крыс этой группы выявило увеличение содержания эозинофилов в крови спустя 3 суток, в сравнении с результатами во 2-й группе

Группы		Общее со-	Содержание различных видов лейкоцитов, х 10°/л									
кры иссл	с, объект едования, рок ЭП	держание лейкоци- тов, х 10°/л	Ми	Мм	п	н	Э	Б/ТК	М/Мф	л		
Ko	онтроль	6,5 (4,7; 7,6)	0 (0; 0)	0 (0; 0)	133 (0; 152)	581 (474;672)	110 (0;180)	62 (0;126)	153 (70; 304)	5390 (4089; 6308)		
- TY3	ЭП	13,6** (11,6; 14,5)	0 (0; 0)	952** (770; 1160)	1822** (1595; 2240)	7077** (5830;7700)	0 (0; 0)	0 (0; 0)	1119** (660; 1508)	2464** (1972; 2584)		
0,5 сут	ЭП+L-Arg	12,5** (11,9; 15,0)	0 (0; 0)	548** [#] (450; 600)	1423** (1309; 1680)	6528** (5290; 7084)	0 (0; 150)	0 (0; 120)	1295** (1071; 1560)	3240** [#] (2990; 3450)		
<u> </u>	ЭП	16,1** (14,5; 17,8)	773** ^Ψ (632; 1068)	907** (728; 1160)	3217** ^Ψ (2414; 4186)	6218** (5576;6478)	0 (0; 0)	0 (0; 0)	2979** ^Ψ (2136; 3160)	2011** (1780; 2296)		
1 сут	ЭП+L-Arg	15,0** (14,4; 16,1)	428** ^{#Ψ} (326; 456)	533**# (456; 592)	2022*** [#] (1771; 2160)	6191** (5605; 6660)	0 (0; 0)	0 (0; 0)	2924** ^{\psi} (2608; 3381)	3100*** (2516; 3381)		
3 сут	ЭП	14,6** (13,4; 16,1)	1121** ^Ψ (710; 1328)	690** (664; 780)	2578** (2254; 2656)	5285** ^{ΨΔ} (4970;5513)	0 (0; 149)	0 (0;142)	2943** ^{\psi} (2144; 3124)	2311** (1988; 2737)		
	ЭП+L-Arg	12,8** [∆] (11,5; 13,7)	448** ^{#Ψ} (393; 548)	578** [#] (393; 625)	1411** [#] ^Δ (1370; 1595)	3793**#ΨΔ (3052; 4192)	304* ^{#Ψ} (250; 411)	55∆ (0; 115)	2099** ^Ψ (1750; 2740)	3920**# ^Δ (3875; 3930)		

Примечание: L - общее содержание лейкоцитов; Mu - миелоциты; Mu - миелоциты; Ru - миелоциты;

Группы крыс, объект исследова- ния, срок ЭП		Общее	Содержание различных видов лейкоцитов, х 10 ⁶ /л									
		содержа- ние лейкоци- тов, х 10°/л	Ми	Мм	п	н	Э	Б/ТК	М/Мф	л		
Koi	нтроль	4,1 (2,5; 5,4)	0 (0; 0)	0 (0; 0)	40 (0; 56)	344 (275; 527,5)	71 (42; 108)	134 (75; 162)	203 (168; 312)	2817 (1950;4509)		
Cy.	ЭП	37,1** (34,8; 41,9)	0 (0; 0)	2040** (1380; 2544)	4875** (4037; 5866)	22410** (21045; 23464)	397** (348; 424)	384 (0; 424)	2078** (1468; 3352)	5311** (5138;6264)		
0,5	ЭΠ+ L-Arg	34,7** (32,2; 36,7)	0 (0; 0)	1107** [#] (1062; 1272)	3423** (3051; 4134)	19905** (17710; 21518)	363** (339; 644)	347 (0; 644)	2130** (1835; 2597)	7047** (6762;7340)		
.	ЭП	47,9** ^{\psi} (45,0; 51,8)	3640** ^Ψ (3138; 4050)	4164** ^Ψ (4050; 4440)	9542** ^{\psi} (8368; 9842)	18296** (17822; 21238)	521** (488; 888)	494* (450; 523)	5508** ^Ψ (4500; 6322)	5478** (4662;5753)		
1 cyT	ЭΠ+ L-Arg	43,9** ^Ψ (39,7; 44,8)	1965** ^Ψ (1792; 2700)	2689** ^{#Ψ} (1945; 3150)	6490** ^{#Ψ} (6062; 7200)	17070** (13950; 19918)	613** (445; 794)	393 (0; 449)	6062** ^Ψ (5057; 6352)	7146** (6495;8337)		
	ЭП	43,4** (41,5; 47,1)	3340** ^Ψ (3087; 4710)	2499** ^Δ (1,884; 3264)	7203** ^{ΨΔ} (6201; 7536)	14949** ^{ΨΔ} (14112; 15741)	474** (427; 682)	440 (0; 477)	7531** ^{ΨΔ} (6832; 8379)	6569** [∆] (5978;7065)		
3 0)	ЭΠ+ L-Arg	36,1**## (33,2; 38,9)	1432** ^{#Ψ} (1101; 1770)	1442** [#] (1308; 1592)	5087** [#] ^Δ (3984; 5572)	12474** ^{#ΨΔ} (11952; 13407)	787** (664; 1062)	350 (0; 1389)	6090** ^{\psi} (5559; 8169)	7852** (7521;9175)		

Таблица 3. Общее количество (х 10⁹/л) и содержание различных видов лейкоцитов (х 10⁶/л) в перитонеальном экссудате крыс с экспериментальным перитонитом (ЭП) и введением L-аргинина (L-Arg), Me (LQ; UQ)

Примечание: Mu — миелоциты; Mu — миелоциты; Π и H — палочкоядерные и сегментоядерные нейтрофилы, соответственно; 3 — эозинофилы; TK — тучные клетки; $M\phi$ — макрофаги; Π — лимфоциты; CV — сутки; значимые различия относительно: $N\phi$ — $N\phi$

Группы крыс, объект		Содержание различных видов лейкоцитов, %									
	исследования, срок ЭП		Ми	Мм	П	Н	Э	Б/ТК	М/Мф	Л	
	Коі	нтроль	0 (0; 0)	0 (0; 0)	2 (0; 3)	9 (7; 14)	1 (1; 2)	1 (0; 1)	3 (1; 4)	85 (77; 87)	
	0,5 сут	ЭП	0 (0; 0)	7 (6; 8)**	15 (11; 17)**	53 (49; 55)**	0 (0; 0)*	0 (0; 0)	8 (5; 11)*	18 (17; 22)**	
Δ		ЭΠ+L-Arg	0 (0; 0)	4 (3; 5)**	12 (9; 13)**	49 (46; 54)**	0 (0; 1)	0 (0; 1)	11 (9; 12)**	25 (23; 26)**	
кровь	1 сут	ЭП	5 (4; 6)** ^Ψ	6 (4; 8)**	20 (17; 23)**	37 (34; 41)** ^Ψ	0 (0; 0)*	0 (0; 0)	18 (15; 21)** ^Ψ	14 (11;15)** ^Ψ	
¥		ЭΠ+L-Arg	3 (2; 3)** ^Ψ	4 (3; 4)**	13 (12; 15)**	41 (40; 45)** ^Ψ	0 (0; 0)*	0 (0; 0)	20 (17; 22)** ^Ψ	20 (17; 22)**	
	3 сут	ЭП	6 (5; 9)** ^Ψ	5 (4; 6)**	17 (15; 19)**	35 (33; 37)** ^Ψ	0 (0; 1)	0 (0; 1)	18 (16; 22)** ^Ψ	17 (14; 18)**	
		ЭΠ+L-Arg	4 (3; 4)** ^Ψ	5 (3; 5)**	12 (11; 13)**	29 (28; 31)** ^{ΨΔ}	3 (2; 3)	1 (0; 1)	17 (15; 20)** ^Ψ	31 (29; 33)** ^{#ΨΔ}	
	Контроль		0 (0; 0)	0 (0; 0)	1 (0; 1)	12 (7; 14)	1 (0; 1)	1 (1; 2)	7 (4; 9)	77 (70; 84)	
	0.5.00	ЭП	0 (0; 0)	6 (4; 6)**	13 (11; 15)**	59 (54; 63)**	1 (1; 1)	1 (0; 1)	6 (4; 8)	15 (13; 18)**	
aT	0,5 сут	ЭΠ+L-Arg	0 (0; 0)	3 (3; 4)**	10 (9; 13)**	57 (55; 59)**	1 (1; 2)	1 (0; 2)	7 (5; 7)	21 (20; 23)**#	
экссудат	1 0.7	ЭП	8 (6; 9)** ^Ψ	9 (8;10)** ^Ψ	20 (17;21)** ^Ψ	39 (36; 41)** ^Ψ	1 (1; 2)	1 (1; 1)	12 (10; 14) ^Ψ	12 (9; 12)**	
ĕ	1 сут	ЭΠ+L-Arg	5 (4; 6)** ^Ψ	7 (5; 7)**	16 (14; 17)**	41 (31; 46)** ^Ψ	2 (1; 2)	1 (0; 1)	14 (13; 16)** ^Ψ	17 (15; 21)***	
	2	ЭП	8 (7; 10)** ^Ψ	6 (4; 8)**	17 (14; 18)**	34 (32; 35)** ^Ψ	1 (1; 2)	1 (0; 1)	17 (16;19)** ^{ΨΔ}	15 (13; 17)**	
	3 сут	ЭП+L-Arg	4 (3; 5)** ^{#Ψ}	4 (3; 4)**	14 (12; 15)**	34 (33; 36)** ^Ψ	2 (2; 3)*	1 (0; 1)	18 (16; 21)** ^{ΨΔ}	24 (22; 25)***	

Таблица 4. Относительное содержание различных видов лейкоцитов (%) в крови и перитонеальном экссудате крыс с экспериментальным перитонитом (ЭП) и введением L-аргинина (L-Arg), Me (LQ; UQ)

Примечание: Mu — миелоциты; Mw — миелоциты; Π и H — палочкоядерные и сегментоядерные нейтрофилы, соответственно; 3 — эозинофилы; 5/TK — базофилы/тучные клетки; M/ $M\phi$ — моноциты/ макрофаги; Π — лимфоциты; сут — сутки; значимые различия относительно: * — p < 0,05, ** — p < 0,01 — контрольной группы, Ψ — p < 0,05 — 1-й и Δ — p < 0,05 — 2-й подгруппы в пределах группы.

ДИССЕРТАЦИОННЫЕ ИССЛЕДОВАНИЯ

животных, без введения субстрата NOS, что, согласно данным литературы, является благоприятным признаком, свидетельствующим о регрессе воспаления, при этом не обнаружено изменения количества базофилов в крови и перитонеальной жидкости [8].

У крыс с ЭП и введением L-аргинина установлено развитие лимфоцитоза при отсутствии изменений со стороны моноцитов/макрофагов во все изучаемые сроки в крови и перитонеальном экссудате. Это может быть обусловлено повышением созревания и миграционной активности лимфоцитов, продуцирующих фактор торможения миграции лейкоцитов, приводя к ограничению воспаления и его переходу в фазу пролиферации и регенерации [8].

Таким образом, применение L-аргинина у крыс с перитонитом оказывало иммуномо-

дулирующий эффект, который выражался в виде уменьшения нейтрофильного лейкоцитоза и ядерного сдвига лейкоформулы влево, увеличения способности перитонеальных нейтрофилов к фагоцитозу, развития лимфоцитоза и эозинофилии в сравнении со значениями показателей у животных с перитонитом без его использования.

Кроме того, введение L-аргинина приводило к уменьшению концентрации NO_x в крови и перитонеальной жидкости крыс с перитонитом ($maб\pi$. 5), что может быть связано с уменьшением активности индуцируемой NOS в данных условиях.

При оценке прооксидантноантиоксидантного состояния в плазме крови и перитонеальной жидкости крыс с ЭП и введением L-аргинина отмечено уменьшение продукта перекисного окисления липидов (MDA) и увеличение уровня антиоксиданта глутатиона (GSH), что указывает на меньшую выраженность окислительного стресса, согласуясь с данными литературы о наличии у L-аргинина антиоксидативных свойств, в том числе обусловленных активацией энлотелиальной NOS с угнетением образования супероксидного радикала $O_2^{\bullet,\bullet}$ [2].

Также у животных этой группы наблюдалось уменьшение количества циркулирующих эндотелиальных клеток в крови спустя 1 сутки – до 17,5 (16,7; 18,9)/мкл, или в 1,2 раза, спустя 3 суток – до 15,5 (14,4; 17,2)/мкл, или в 1,3 раза (p<0,01), как признак меньшей выраженности повреждения эндотелия кровеносных сосудов, что может быть обусловлено поддержанием активности эндотелиальной NOS и снижением повреждающего действия факторов окислительного стресса [2].

Таким образом, у крыс с введением субстрата NOS – L-ар-

Объект	Группы крыс, сроки ЭП		[NOx], мкмоль/л	[MDA], мкмоль/л	[GSH], моль–1/мл	
	Контроль		17 (16; 18)	0,7 (0,5; 0,9)	6,6 (6,1; 6,9)	
		0,5 сут.	96 (93; 98)**	3,3 (3,0; 3,5)**	2,9 (2,7; 3,1)**	
	ЭП	1 сут.	112 (107; 116)** ^Ψ	4,3 (4,0; 4,6)** ^Ψ	1,8 (1,5; 2,0)** ^{\psi}	
ПК		3 сут.	68 (64; 71)** ^{ΨΔ}	3,1 (2,9; 3,4)**△	2,7 (2,4; 2,9)**	
		0,5 сут.	87 (85; 90)**	2,5 (2,3; 2,7)**	3,7 (3,5; 3,9)**	
	ЭΠ+L-Arg	1 сут.	97 (95; 100)**	3,5 (3,2; 3,7)***	2,6 (2,4; 3,0)** ^{\psi}	
		3 сут.	52 (50; 56)** ^{#ΨΔ}	2,2 (2,1; 2,5)** ^{#∆}	3,6 (3,4; 3,9)*****	
	Контроль		13 (10; 14)	0,5 (0,4; 0,5)	4,6 (4,3; 4,9)	
		0,5 сут.	159 (150; 164)**	4,9 (4,7; 5,2)**	1,4 (1,3; 1,7)**	
	ЭП	1 сут.	195 (187; 203)** ^Ψ	5,9 (5,6; 6,2)** ^Ψ	0,8 (0,7; 1,0)** ^Ψ	
пж		3 сут.	129 (125; 134)** ^{ΨΔ}	4,5 (4,2; 4,7)** [∆]	1,5 (1,3; 1,7)**	
		0,5 сут.	142 (136; 146)**	4,1 (3,9; 4,4)**	2,2 (2,0; 2,4)**	
	ЭП+L-Arg	1 сут.	168 (162; 176)** ^Ψ	4,8 (4,6; 5,0)**	1,6 (1,3; 1,7)***	
		3 сут.	112 (107; 115)** ^{##ΨΔ}	3,3 (3,1; 3,5)** ^{#ΨΔ}	2,2 (2,0; 2,4)** ^{#Ψ}	

Таблица 5. Содержание нитрит/нитратов и показатели прооксидантно-антиоксидантного состояния (MDA, GSH) у крыс с экспериментальным перитонитом и введением L-аргинина, Me (LQ; UQ)

Примечания: N0x — нитраты/нитриты; MDA — малоновый диальдегид; GSH — восстановленный глутатион; ΠK — плазма крови; ΠK — перитоне-альная жидкость; значимые различия относительно: *-p<0,05, **-p<0,05, **-p<0,001 — группы «контроль»; #-p<0,05, ##-p<0,05, ##-p<0,001 — группы #0, #1 годгруппы (спустя полсуток) и #0 — #0,05 — #2 и подгруппы (спустя 1 сутки) в пределах группы

гинина наблюдалось уменьшение содержания в плазме крови и перитонеальной жидкости стабильных метаболитов $NO - NO_x$ и продукта липопероксидации – MDA наряду с увеличением уровня GSH как показателя антиоксидантной защиты, а также сокращение числа циркулирующих эндотелиальных клеток в крови, указывая на снижение повреждения эндотелия кровеносных сосудов.

Развитие острого ЭП в условиях введения L-аргинина сопровождалось менее выраженными нарушениями структуры париетальной и висцеральной брюшины, чем у крыс с перитонитом без его введения. Так, спустя полсуток ЭП выявлены полнокровие сосудов висцеральной и париетальной брюшины (++), расширение кишечных петель, наличие желтоватого цвета перитонеального экссудата (++), менее выраженное набухание и десквамация мезотелиоцитов (++), разрыхление и отек соединительнотканых волокон брюшины (+) с их очаговой инфильтрацией преимущественно нейтрофилами (++), явления венозной гиперемии и стаза в капиллярах и венулах (++). Спустя 3 суток перитонита с введением L-аргинина отмечены более выраженные структурные нарушения в серозной оболочке, чем в соответствующей группе крыс спустя полсуток, которые проявлялись в меньшей степени, чем у животных с ЭП: меньшее количество перитонеального экссудата желтого цвета (++), рыхлых спаек (+) и фибринозных наложений на брюшине (++). При микроскопии отмечены умеренно выраженные набухание и десквамация мезотелиоцитов (++), гладкомышечных клеток и нейронов межмышечного нервного сплетения (++), разрыхление волокон соединительной ткани (++), их инфильтрация преимущественно нейтрофилами и макрофагами (++), признаки венозной гиперемии и стаза (+++), расширение лимфатических сосудов. Микротромбозы и внутрибрюшинные микроабсцессы обнаруживались редко.

Выводы

Введение крысам с экспериментальным перитонитом суб-

страта NO-синтазы – L-аргинина приводило к корригированию проявлений интоксикационного синдрома, прооксидантноантиоксидантного дисбаланса, дисфункции эндотелия, структурных изменений брюшины, иммунных нарушений в виде уменьшения выраженности нейтрофильного лейкоцитоза и ядерного сдвига влево наряду с увеличением способности нейтрофилов к фагоцитозу, лимфоцитозом и эозинофилией, изменению уровня нитритов/нитратов.

- Summary. High lethality in peritonitis and the data about the role of nitric monoxide in its pathogenesis, determines the feasibility of the research to study effects of the NO-synthase substrate L-arginine. The aim of the research was to study the acute experimental peritonitis course in rats with administration of the NO-synthase substrate L-arginine. The experiments were carried out on male rats, divided into 3 series and intraperitoneally injected with: series 1 (control) 0,9% sodium chloride, series 2 (experimental peritonitis) 15% fecal suspension, 0,6 ml/100 g, series 3 (EP+L-Arg) 15% fecal suspension, 0,6 ml/100 g, followed by intramuscular administration of L-arginine, 300 mg/kg. Administration of the NO-synthase substrate L-arginine to rats with experimental peritonitis had a corrective effect in the form of a decrease in the severity of intoxication syndrome, the reaction of leukocytes of blood and peritoneal fluid, changes in nitrites/nitrates level, a decrease in the activity of oxidative stress, endothelial dysfunction and the degree of damage to peritoneum.
- Keywords: experimental peritonitis, intoxication syndrome, leukocytes, endo-thelium, peritoneum, oxidative stress, L-arginine.
- https://doi.org/10.29235/1818-9857-2022-2-78-83

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Э.В. Гусаковская. Альтернативность выбора адекватного способа моделирования перитонита в эксперименте / Э.В. Гусаковская, Н.Е. Максимович // Новости медико-биологических наук. 2018. Т. 17. №2. С. 73—78.
- 2. Н.Е. Максимович. Аминокислота L-аргинин и перспективы ее использования в клинической практике / Н.Е. Максимович, Д.А. Маслаков // Здравоохранение. 2003. №5. С. 35—37.
- 3. В.А. Лазаренко. Экспериментальная модель распространенного калового перитонита / В.А. Лазаренко [и др.] // Человек и его здоровье. 2008. №4. С. 128—132.
- 4. Способ определения функциональной активности нейтрофилов по реакции восстановления нитросинего тетразолия: пат. RU2415423C2 / Ю.И. Пацула, В.С. Власенко. Опубл. 27.03.2011.
- D.L. Granger. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction / D.L. Granger, R.R. Taintor, K.S. Boockvar // Methods Enzymol. 1996. Vol. 268. P. 142–151. doi: 10.1016/s0076–6879(96)68016–1.
- Rice-Evans C.A. Laboratory techniques in biochemistry and molecular biology: techniques in free radical research.— London, 1991.
- 7. Терентьев А.А. Биохимия мышечной ткани: учеб. пособие. М., 2019.
- 8. Лебедев К.А., Понякина И.Д. Интегральная иммунология. М., 2017.

SEE http://innosfera.by/2022/02/experimental_peritonitis

Статья поступила в редакцию 15.11.2022 г.